Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Combine datasets using Pandas merge(), join(), concat() and append()
Data Science

Combine datasets using Pandas merge(), join(), concat() and append()

Last Updated on October 29, 2020 by Editorial Team

Author(s): Vivek Chaudhary

Free stock photo of abstract, access, background
Source: Pexels

In the world of Data Bases, Joins and Unions are the most critical and frequently performed operations. Almost every other query is an amalgamation of either a join or a union. Using Pandas we perform similar kinds of stuff while working on a Data Science algorithm or any ETL (Extract Transform and Load) project, joins and unions are critical here as well.

Just a little difference between join and unions before jumping onto the use cases of both. Both join and union are used to combine data sets, however, the result set of a join is a horizontal combination of the dataset where a result set of a union is a vertical combination of data set.

In Pandas for a horizontal combination we have merge() and join(), whereas for vertical combination we can use concat() and append(). Merge and join perform similar tasks but internally they have some differences, similar to concat and append. And in this blog, I had tried to list out the differences in the nature of these methods.

  1. merge() is used for combining data on common columns or indices.

create two data frames and build an understanding of how merge works.

import pandas as pd
d1 = {‘Id’: [‘A1’, ‘A2’, ‘A3’, ‘A4’,’A5'],
 ‘Name’:[‘Vivek’, ‘Rahul’, ‘Gaurav’, ‘Ankit’,’Vishakha’], 
 ‘Age’:[27, 24, 22, 32, 28],} 
 
 
d2 = {‘Id’: [‘A1’, ‘A2’, ‘A3’, ‘A4’],
 ‘Address’:[‘Delhi’, ‘Gurgaon’, ‘Noida’, ‘Pune’], 
 ‘Qualification’:[‘Btech’, ‘B.A’, ‘Bcom’, ‘B.hons’]}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)

Case 1. merging data on common columns ‘Id’

#Inner Join
pd.merge(df1,df2)
#simple merge with no additional arguments performs an inner/equi join equivalent to data base join operation
pd.merge(df1,df2, how='inner)
#produces output similar as above, as pandas merge by default is an equi join
merge inner
#Left Join
pd.merge(df1,df2,how=’left’)
#matching and non matching records from left DF which is df1 is present in result data frame
merge left
#Right Join
pd.merge(df1,df2,how=’right’)
#matching and non matching records from right DF, df2 will come in result df
#as of now we dont have any non matching record in right df
merge right
#outer join
pd.merge(df1,df2,how=’outer’)
#all the matching and non matching records are available in resultant dataset from both data frames
merge full outer

Case 2: merge data frames with no common columns

#changed the merging key in data frame d2
import pandas as pd
d1 = {‘Id’: [‘A1’, ‘A2’, ‘A3’, ‘A4’,’A5'],
 ‘Name’:[‘Vivek’, ‘Rahul’, ‘Gaurav’, ‘Ankit’,’Vishakha’], 
 ‘Age’:[27, 24, 22, 32, 28],} 
 
 
d2 = {‘ID’: [‘A1’, ‘A2’, ‘A3’, ‘A4’],
 ‘Address’:[‘Delhi’, ‘Gurgaon’, ‘Noida’, ‘Pune’], 
 ‘Qualification’:[‘Btech’, ‘B.A’, ‘Bcom’, ‘B.hons’]}
df1=pd.DataFrame(d1)
df2=pd.DataFrame(d2)
#lets check when merging keys are different ('Id' and 'ID')
pd.merge(df1,df2)

merging result in below error:

MergeError: No common columns to perform merge on.

to overcome the merge error, we can use pandas argument ‘left_on’ and ‘right_on’ to explicitly indicate pandas on what key columns we want to merge data frames, rest everything remains similar.

#df1 key column 'Id'
#df2 key column 'ID'
pd.merge(df1,df2,left_on=’Id’,right_on=’Id’,how=’left’)
merge uncommon keys

2. join() is used for combining data on a key column or an index.

create two data frames and build an understanding of how join works.

import pandas as pd
df1 = pd.DataFrame({‘key’: [‘K0’, ‘K1’, ‘K5’, ‘K3’, ‘K4’, ‘K2’],
 ‘A’: [‘A0’, ‘A1’, ‘A5’, ‘A3’, ‘A4’, ‘A2’]})
df2 = pd.DataFrame({‘key’: [‘K0’, ‘K1’, ‘K2’],
 ‘B’: [‘B0’, ‘B1’, ‘B2’]})

Case 1. join on indexes

By default, pandas join operation is performed on indexes both data frames have default indexes values, so no need to specify any join key, join will implicitly be performed on indexes.

#default nature of pandas join is left outer join
df1.join(df2, lsuffix=’_l’, rsuffix=’_r’)
join left

If there are overlapping columns in pandas join, it throws an error :

ValueError: columns overlap but no suffix specified: Index([‘key’], dtype=’object’)

With the help of the below use case try to understand the default nature of pandas join which is left outer join.

Create two data frames with different index values

df1 = pd.DataFrame({‘key’: [‘K0’, ‘K1’, ‘K5’, ‘K3’, ‘K4’, ‘K2’],
 ‘A’: [‘A0’, ‘A1’, ‘A5’, ‘A3’, ‘A4’, ‘A2’]},
 index=[0,1,2,3,4,5])
df2 = pd.DataFrame({‘key’: [‘K0’, ‘K1’, ‘K2’],
 ‘B’: [‘B0’, ‘B1’, ‘B2’]},
 index=[6,7,8])
df1.join(df2,lsuffix=’_l’,rsuffix=’_r’)
#df1 is left DF and df2 is right DF
non-matching indexes

Index values in both data frames are different, in the case of inner/equi join resultant data set will be empty but data is present from left DF (df1).

#inner join
df1.join(df2,lsuffix=’_l’,rsuffix=’_r’,how=’inner’)
join inner
#outer join
df1.join(df2,lsuffix=’_l’,rsuffix=’_r’,how=’outer’)
join outer

Case 2. join on columns

Data frames can be joined on columns as well, but as joins work on indexes, we need to convert the join key into the index and then perform join, rest every thin is similar.

#join on data frame column
df1.set_index(‘key1’).join(df2.set_index(‘key2’))

3. concat() is used for combining Data Frames across rows or columns.

create two data frames to understand how concat works. concat is a vertical operation.

Case 1. concat data frames on axis=0, default operation

import pandas as pd
m1 = pd.DataFrame({
 ‘Name’: [‘Alex’, ‘Amy’, ‘Allen’, ‘Alice’, ‘Ayoung’],
 ‘subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5'],
 ‘Marks_scored’:[98,90,87,69,78]},
 index=[1,2,3,4,5])
m2 = pd.DataFrame({
 ‘Name’: [‘Billy’, ‘Brian’, ‘Bran’, ‘Bryce’, ‘Betty’],
 ‘subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5'],
 ‘Marks_scored’:[89,80,79,97,88]},
 index=[4,5,6,7,8])
pd.concat([m1,m2])

Indexes of both the Data Frames are preserved in concat operation.

concat
#ignore indexes from original data frames
pd.concat([m1,m2],ignore_index=True)

sequential numbers are given to index values unlike previous output

index ignored

Case 2. concat operation on axis=1, horizontal operation

#axis=1 works as join operation
pd.concat([m1,m2],axis=1)
concat as join

Case 3. concat unequal shape data frames

df1 = pd.DataFrame({‘A’:[1,2,3], ‘B’:[1,2,3]})
df2 = pd.DataFrame({‘A’:[4,5]})

If we try to perform concat operation on df1 and df2 with unequal columns or data frames of different shapes. while performing concatenation operation on unequal shape data frames, pandas updates value as NaN for missing values.

Pandas NaN are float type in nature so values of series B changed to float.

df = pd.concat([df1,df2],ignore_index=True)
concat unequal shape DF

4. append() combine data frames vertically fashion

create two data frames to understand how append works.

Case 1. appending data frames, duplicate index issue

m1 = pd.DataFrame({
 ‘Name’: [‘Alex’, ‘Amy’, ‘Allen’, ‘Alice’, ‘Ayoung’],
 ‘subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5'],
 ‘Marks_scored’:[98,90,87,69,78]},
 index=[1,2,3,4,5])
m2 = pd.DataFrame({
 ‘Name’: [‘Billy’, ‘Brian’, ‘Bran’, ‘Bryce’, ‘Betty’],
 ‘subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5'],
 ‘Marks_scored’:[89,80,79,97,88]},
 index=[1,2,3,4,5])

with overlapping indexes append function throws error:

ValueError: Indexes have overlapping values:

m1.append(m2,verify_integrity=False)
#verify_integrity=False is default argument
m1.append(m2)
#output will be similar for both above lines of code
append

Case 2. append data frames with unequal shapes

create two new data frames with different shapes

m1 = pd.DataFrame({
 ‘Name’: [‘Vivek’, ‘Vishakha’, ‘Ash’, ‘Natalie’, ‘Ayoung’],
 ‘subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5'],
 ‘Marks_scored’:[98,90,87,69,78],
 ‘Rank’:[1,3,6,20,13]},
 index=[1,2,3,4,5])
m2 = pd.DataFrame({
 ‘Name’: [‘Barak’, ‘Wayne’, ‘Saurav’, ‘Yuvraj’, ‘Suresh’],
 ‘subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5'],
 ‘Marks_scored’:[89,80,79,97,88],},
 index=[1,2,3,4,5])
m1.append(m2)

Summary:

· Pandas Data set combination operations to use cases

· Nature of every combination operation

· Pandas merge() , join() way of working and differences

· Pandas concat() , append() way of working and differences

Thanks to all for reading my blog and If you like my content and explanation please follow me on medium and your feedback will always help us to grow.

Thanks

Vivek Chaudhary


Combine datasets using Pandas merge(), join(), concat(), and append() was originally published in Towards AI — Multidisciplinary Science Journal on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->