Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Supervised Contrastive Learning for Cassava Leaf Disease Classification
Deep Learning

Supervised Contrastive Learning for Cassava Leaf Disease Classification

Last Updated on January 26, 2021 by Editorial Team

Author(s): Dimitre Oliveira

Deep Learning

Applying deep learning with supervised contrastive learning to detect diseases on cassava leaves.

Photo by malmanxx on Unsplash

Supervised Contrastive Learning (Prannay Khosla et al.) is a training methodology that outperforms supervised training with cross-entropy on classification tasks.
The idea is that training models using Supervised Contrastive Learning (SCL) can make the model encoder learn better class representation from the samples, this should lead to better generalization and robustness to image and label corruption.

In this article you will learn what is, and how supervised contrastive learn works, you will see the code implementation, an use case application and finally a comparison between SCL and regular cross-entropy.

In short, this is how SCL works:

Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes.

There are many contrastive learning methods like “supervised contrastive learning”, “self-supervised contrastive learning”, “SimCLR” and others, the contrastive part that they share in common is that they learn to contrast (push apart) samples that are of one domain from samples of other domains, but SCL leverages label information in a supervised way for this task.
For more detailed information check out the paper.

Different training methods architectures.

Essentially, training a classification model with Supervised Contrastive Learning is performed in two phases:

  1. Training an encoder to learn to produce vector representations of input images such that representations of images in the same class will be more similar compared to representations of images in different classes.
  2. Training a classifier on top of the frozen encoder.

The use case

We are going to apply Supervised Contrastive Learning to a dataset from a Kaggle competition (Cassava Leaf Disease Classification) the objective is to classify images of leaves from cassava plants into 5 categories:

0: Cassava Bacterial Blight (CBB)
1: Cassava Brown Streak Disease (CBSD)
2: Cassava Green Mottle (CGM)
3: Cassava Mosaic Disease (CMD)
4: Healthy

We have four kinds of diseases and one category for healthy leaves, here are some image samples:

Cassava leaves image samples from the competition.

For more information about cassava leaf diseases, check out this link from PlantVillage.

The data has 21397 images for training and around 15000 for the test set.

Experiment set-up

The data: Images with resolution 512 x 512 pixels.
 — The model (encoder): EfficientNet B3.
Obs: you can check the full code here.

Usually, contrastive learning methods work better if each training batch has a sample of each class, this will help the encoder learn to contrast samples of a domain from the other domains batch-wise, this means using a large batch size, and in this case, I have oversampled the minority classes, so each batch has roughly the same probability of having samples from each class.

Class distribution of the dataset, after oversample.

Data augmentation usually helps computer vision tasks, during my experiments I also saw improvements from data augmentation, here I am using shear, rotation, flips, crops, cutout, and changes in saturation, contrast, and brightness, it may seem a lot, but the images don’t get too different from the original ones.

Augmented data samples.

Now we can look at the code

Encoder

Our encoder will be an “EfficientNet B3” but with an average pooling layer at the top of the encoder, this pooling layer will output a vector of size 2048, later it will be used to inspect the representation learned by the encoder.

def encoder_fn(input_shape):
inputs = L.Input(shape=input_shape, name=’inputs’)
base_model = efn.EfficientNetB3(input_tensor=inputs,
include_top=False,
weights=’noisy-student’,
pooling=’avg’)

model = Model(inputs=inputs, outputs=base_model.outputs)
return model

Projection head

The projection head will be placed at the top of the encoder, and it will be responsible for projecting the output of the encoder’s embedding layer into a smaller dimension, in our case, it will project the 2048-dimension encoder into a 128-dimension vector.

def add_projection_head(input_shape, encoder):
inputs = L.Input(shape=input_shape, name='inputs')
features = encoder(inputs)
outputs = L.Dense(128, activation='relu',
name='projection_head',
dtype='float32')(features)

model = Model(inputs=inputs, outputs=outputs)
return model

Classifier head

The classifier head is used for the optional second stage of the training, after the SCL training stage, we can remove the projection head and add this classifier head to the encoder and fine-tune the model with the regular cross-entropy loss, this should be done with the encoder’s layers frozen.

def classifier_fn(input_shape, N_CLASSES, encoder, trainable=False):
for layer in encoder.layers:
layer.trainable = trainable

inputs = L.Input(shape=input_shape, name='inputs')

features = encoder(inputs)
features = L.Dropout(.5)(features)
features = L.Dense(1000, activation='relu')(features)
features = L.Dropout(.5)(features)
outputs = L.Dense(N_CLASSES, activation='softmax',
name='outputs', dtype='float32')(features)

model = Model(inputs=inputs, outputs=outputs)
return model

Supervised Contrastive learning loss

This is the code implementation of the SCL loss, the only parameter here is temperature, “0.1” is the default value, but it can be tweaked, larger temperatures can result in classes more separated, but smaller temperatures can benefit from longer training.

class SupervisedContrastiveLoss(losses.Loss):
def __init__(self, temperature=0.1, name=None):
super(SupervisedContrastiveLoss, self).__init__(name=name)
self.temperature = temperature

def __call__(self, labels, ft_vectors, sample_weight=None):
# Normalize feature vectors
ft_vec_normalized = tf.math.l2_normalize(ft_vectors, axis=1)
# Compute logits
logits = tf.divide(
tf.matmul(ft_vec_normalized,
tf.transpose(ft_vec_normalized)
), temperature
)
return tfa.losses.npairs_loss(tf.squeeze(labels), logits)

tfa” is the alias for the Tensorflow addons package.

The training

I will skip the Tensorflow boilerplate training code because it is pretty standard, but you can check the complete code in this notebook.

First stage training (encoder + projection head)

The 1st stage training is done with the encoder + the projection head, using the supervised contrastive learning loss.

Building the model

with strategy.scope(): # Inside a strategy because I am using a TPU
encoder = encoder_fn((None, None, CHANNELS)) # Get the encoder
encoder_proj = add_projection_head((None, None, CHANNELS),encoder)
# Add the projection head to the encoder
encoder_proj.compile(optimizer=optimizers.Adam(lr=3e-4), 
loss=SupervisedContrastiveLoss(temperature=0.1))

Training

model.fit(x=get_dataset(TRAIN_FILENAMES, 
repeated=True,
augment=True),
validation_data=get_dataset(VALID_FILENAMES,
ordered=True),
steps_per_epoch=100,
epochs=10)

Second stage training (encoder + classifier head)

For the 2nd stage of the training, we remove the projection head and add the classifier head at the top of the encoder, which now has trained weights. For this step, we can use regular cross-entropy loss and train the model as usual.

Building the model

with strategy.scope():
model = classifier_fn((None, None, CHANNELS), N_CLASSES,
encoder, # trained encoder
trainable=False) # with frozen weights
    model.compile(optimizer=optimizers.Adam(lr=3e-4),
loss=losses.SparseCategoricalCrossentropy(),
metrics=[metrics.SparseCategoricalAccuracy()])

Training
Pretty much the same as before

model.fit(x=get_dataset(TRAIN_FILENAMES, 
repeated=True,
augment=True),
validation_data=get_dataset(VALID_FILENAMES,
ordered=True),
steps_per_epoch=100,
epochs=10)

Visualizing the embeddings outputs

One interesting way of evaluating the learned representation of the encoder is to visualize the output of the feature embedding, in our case, it is the last layer of the encoder, which was the average pooling layer.
Here we will be comparing the model trained with SCL with another one trained with regular cross-entropy, you can see the complete training in the reference notebook.
The visualizations are generated by applying t-SNE at the embedding outputs of the validation dataset.

Cross-entropy embedding

Embedding visualization of the model trained with cross-entropy.

Supervised Contrastive Learning embedding

Embedding visualization of the model trained with SCL.

We can see that both models seem to do a good job at clustering samples of each class together, but looking at the embeddings of the model trained with SCL, the samples of each class are clustered much more apart than samples of the other classes, this is the result of the contrastive learning, we can also expect that this behavior will lead to better generalization since the classes decision boundaries will be more clear, one intuitive exercise to understand this advantage, is trying to draw the decision boundaries lines to separate the classes at each embedding, you will have a much easier time with the SCL embedding.

Conclusion

We saw that training using the supervised contrastive learning methodology is both easy to implement and efficient, it can lead to better accuracy, and better class representations, which in turn can also result in more robust models able to better generalize.
If you are willing to give SCL a try, make sure to check out the links below.

References

Supervised Contrastive Learning paper.
SCL paper review (video by Yannic Kilcher).
SCL tutorial at the official Keras repository.
SCL used on Cassava Leaf Disease Classification (Kaggle competition).
SCL discussion thread (Kaggle competition).

Acknowledgments:

  • Paper authors: Authors: Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, Dilip Krishnan.
    – Keras tutorial: Khalid Salama.

If you wanna check out how to build a training pipeline for computer vision using Tensorflow check out this article: “Efficiently using TPU for image classification”.


Supervised Contrastive Learning for Cassava Leaf Disease Classification was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->