Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

LLM Quantization: Quantize Model with GPTQ, AWQ, and Bitsandbytes
Artificial Intelligence   Latest   Machine Learning

LLM Quantization: Quantize Model with GPTQ, AWQ, and Bitsandbytes

Last Updated on March 25, 2024 by Editorial Team

Author(s): Luv Bansal

Originally published on Towards AI.

Image created by author using Dalle-3 via Bing Chat

This blog will be ultimate guide for Quantization of models, We’ll talk about various ways to quantizing models like GPTQ, AWQ and Bitsandbytes. We’ll discuss the pros and cons of each method (GPTQ vs AWQ vs Bitsandbytes), in the end, use quantized weights for efficient language model inference.

But before diving in, let’s begin by understanding what quantization is and why it’s necessary.

Quantization

A Large Language Model is represented by a bunch of weights and activations. These values are generally represented by the usual 32-bit floating point (float32) datatype.

The number of bits tells us something about how many values it can represent. Float32 can represent values between 1.18e-38 and 3.4e38, quite a number of values! The lower the number of bits, the fewer values it can represent.

FLoat representation U+007C source

As you might expect, if we choose a lower bit size, then the model becomes less accurate but it also needs to represent fewer values, thereby decreasing its size and memory requirements.

One of the most effective methods to reduce the model size in memory is quantization. You can see quantization as a compression technique for LLMs. In practice, the main goal of quantization is to lower the precision of the LLM’s weights, typically from 16-bit to 8-bit, 4-bit, or even 3-bit. However, we do not simply want to use a smaller bit variant but map a larger bit representation to a smaller bit without losing too much information.

Quantisation Techniques

There are three popular quantization methods for LLMs, we will discuss briefly about each of them, then we will look into how to use each of the techniques in code.

  • GPTQ
  • AWQ
  • Bitsandbytes NF4

GPTQ Quantization

GPTQ is a post-training quantization (PTQ) method for quantization that focuses primarily on GPU inference and performance.

Post-training quantization (PTQ) is the sort of quantization, wherein the weights of an already skilled model are transformed to a lower precision without any retraining. This is a trustworthy and clean-to-put-into-effect method

It is based on one-shot weight quantization method based on approximate second-order information, that is both highly- accurate and highly-efficient.

The GPTQ algorithm makes it possible to quantize models up to 2 bits! However, this might come with severe quality degradation. The recommended number of bits is 4, which seems to be a great tradeoff for GPTQ at this time.

The idea behind the method is that it will try to compress all weights to a 4-bit quantization by minimizing the mean squared error to that weight.

Quantize Model to GPTQ

GTPQ requires a lot of GPU VRAM. For this experiment, we are using Nvidia A10 GPU which has 24 GB of memory and we are quantizing Llama 2–7B model and the VRAM consumption peaked at around 16 GB.

Quantization with GPTQ is also slow. It took 35 min with one A10, The quantization speed and VRAM/RAM consumption are the same for the 4-bit, 3-bit, and 2-bit precisions.

While you can’t quantize Llama 2 with GPTQ on the Google Colab free tier. Smaller models (<4B parameters) can be quantized with a colab-free tier.

I used the same snippet that TheBloke uses to quantify HF models to GPTQ. You can find the script here.

You can use the same TheBloke script easily with the below command.

Note: You need to install transformers optimum accelerate auto-gptq first

python ./quant_autogptq.py meta-llama/Llama-2-7b-chat-hf gptq_checkpoints c4 --bits 4 --group_size 128 --desc_act 1 --damp 0.1 --seqlen 4096

I’m simplifying the script above to make it easier for you to understand what’s in it.

To quantize with GPTQ, I installed the following libraries:

pip install transformers optimum accelerate auto-gptq

Importing libraries and loading dataset

from datasets import load_dataset
import os
import random
import torch
import numpy as np
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_id = "meta-llama/Llama-2-7b-hf"

tokenizer = AutoTokenizer.from_pretrained(model_id,
use_fast=True,)
def get_c4():

traindata = load_dataset(
'allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', use_auth_token=False
)
seqlen = 4096
trainloader = []
for _ in range(self.num_samples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] >= self.seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - self.seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
attention_mask = torch.ones_like(inp)
trainloader.append({'input_ids':inp,'attention_mask': attention_mask})
return trainloader
  1. It specifies the pre-trained model ID (“meta-llama/Llama-2–7b-hf”) to load the tokenizer.
  2. get_c4() function is to load the dataset which is used for quantization.

Note that TheBloke didn’t use the entire ‘c4’ dataset which is quite large and it won’t fit in 24GB A10 GPU (I tried it and was giving OOM or Out Of Memory Error while quantising). Instead, only a small part of the ‘c4’ dataset was used.

The quantization and serialization with Transformers

quantize_config = BaseQuantizeConfig(
bits=bits,
group_size=group_size,
desc_act=desc_act,
damp_percent=damp
)

torch_dtype = torch.float16

traindataset = get_c4()

model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config=quantize_config,
low_cpu_mem_usage=True, torch_dtype=torch_dtype)


model.quantize(traindataset, use_triton=self.use_triton, batch_size=self.batch_size, cache_examples_on_gpu=self.cache_examples)

3. It specifies the pre-trained model ID (“meta-llama/Llama-2–7b-hf”) that will be loaded and quantized.

4. It creates a BaseQuantizeConfig object, which configures the GPTQ quantization process:

  • bits: Precision of the quantization. You can set 4, 3, and 2.
  • group_size: The group size to use for quantization. The recommended value is 128 and -1 uses per-column quantization
  • desc_act: Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly speed up inference but the perplexity may become slightly worse. Also known as act-order.

Save quantized Model

output_dir = 'Llama-2-7b-hf-gptq'

model.save_quantized(output_dir, use_safetensors=True)
tokenizer.save_pretrained(output_dir)

5. Finally mention the path where you want to save quantize model weights, and from where quantized model will be loaded for inference.

Push Quantise Model to Hub

You can upload (push) the quantized language model to the Hugging Face Hub, Then, anyone can use it right away for their work. It’s also great for collaborative contributions in the open-source community.

from huggingface_hub import HfApi

api = HfApi()
api.upload_folder(
folder_path="Llama-2-7b-hf-gptq",
repo_id="luv2261/Llama-2-7b-hf-gptq",
repo_type="model",
)

Check out the models I quantized using the method mentioned above here and feel free to use them for your own work.

Load and Inference quantized models from the U+1F917 Hub

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "luv2261/Llama-2-7b-hf-gptq"

model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt = "<s>[INST] Write a tweet on future of AI [/INST]"
inputs = tokenizer(prompt, return_tensors="pt").to(0)

out = model.generate(**inputs, max_new_tokens=250, temperature = 0.6, top_p=0.95, tok_k=40)

print(tokenizer.decode(out[0], skip_special_tokens=True))

AWQ Quantization

AWQ (Activation-aware Weight Quantization) which is a quantization method similar to GPTQ. There are several differences between AWQ and GPTQ as methods but the most important one is that AWQ assumes that not all weights are equally important for an LLM’s performance.

In other words, a small fraction of weights will be skipped during quantization, which helps with the quantization loss.

As a result, their paper mentions a significant speed-up compared to GPTQ whilst keeping similar, and sometimes even better, performance.

Quantize Model to AWQ

AWQ performs zero point quantization down to a precision of 4-bit integers.

AutoAWQ integration with Transformers

Note:

  • Some models like Falcon is only compatible with group size 64.
  • To use Marlin, you must specify zero point as False and version as Marlin.
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_path = 'meta-llama/Llama-2-7b-hf'

quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
# Load model
model = AutoAWQForCausalLM.from_pretrained(
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)

Make compatible with Transformers and Save quantized Model

In order to make it compatible with transformers, we need to modify the config file and then save the quantized model.

from transformers import AwqConfig, AutoConfig
from huggingface_hub import HfApi

# modify the config file so that it is compatible with transformers integration
quantization_config = AwqConfig(
bits=quant_config["w_bit"],
group_size=quant_config["q_group_size"],
zero_point=quant_config["zero_point"],
version=quant_config["version"].lower(),
).to_dict()

# the pretrained transformers model is stored in the model attribute + we need to pass a dict
model.model.config.quantization_config = quantization_config
# a second solution would be to use Autoconfig and push to hub (what we do at llm-awq)

# Save quantized model
quant_path = 'Llama-2-7b-hf-awq'

model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')

Uploading the quantized model to the hugging face hub and loading the model from the hub is pretty much like what I explained for GPTQ.

Bitsandbytes NF4

bitsandbytes is the easiest way for quantizing a model to 8 and 4-bit

It works in three steps:

  1. Normalization: The weights of the model are normalized so that we expect the weights to fall within a certain range. This allows for more efficient representation of more common values.
  2. Quantization: The weights are quantized to 4-bit. In NF4, the quantization levels are evenly spaced with respect to the normalized weights, thereby efficiently representing the original 32-bit weights.
  3. Dequantization: Although the weights are stored in 4-bit, they are dequantized during computation which gives a performance boost during inference.

It represents the weights with 4-bit quantization but does the inference in 16-bit.

If you want to know more about how this quantisation works, I highly recommend to go though this blog

This is a wonderful technique but it seems rather wasteful to have to apply them every time we have to load the model.

Quantise model with Bitsandbytes

Using this quantisation is straightforward with HuggingFace. we just need to define a configuration for the quantization with Bitsandbytes:

from transformers import BitsAndBytesConfig
from torch import bfloat16

# Our 4-bit configuration to load the LLM with less GPU memory
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # 4-bit quantization
bnb_4bit_quant_type='nf4', # Normalized float 4
bnb_4bit_use_double_quant=True, # Second quantization after the first
bnb_4bit_compute_dtype=bfloat16 # Computation type
)

This configuration allows us to specify which quantization levels we are going for. Generally, we want to represent the weights with 4-bit quantization but do the inference in 16-bit.

Loading the model in a pipeline is then straightforward:

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# Zephyr with BitsAndBytes Configuration
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")

model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceH4/zephyr-7b-alpha",
quantization_config=bnb_config,
device_map='auto',
)

# Create a pipeline
pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

prompt = '''
<U+007CsystemU+007C> \
You are a friendly chatbot who always responds in the style of a pirate.\
</s>\
<U+007CuserU+007C>\
Write a tweet on future of AI. </s>\
<U+007CassistantU+007C>
'''


outputs = pipe(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.95
)
print(outputs[0]["generated_text"])

Bitsandbytes vs GPTQ vs AWQ

A quick camparition between Bitsandbytes, GPTQ and AWQ quantization, so you can choose which methods to use according to your use case.

Bitandbytes

  • This method quantise the model using HF weights, so very easy to implement
  • Slower than other quantisation methods as well as 16-bit LLM model.
  • This is a wonderful technique but it seems rather wasteful to have to apply them every time we have to load the model.
  • Take longer time to load the models weights

GPTQ

  • Much Faster as compared to Bitandbytes
  • New model architectures are promptly supported in AutoGPTQ

Challenges

  • Need to quantise the model weights to GPTQ weights beforehand to use it in production.
  • High computation to quantise the model
  • Around ~ 16GB GPU memory required to quantise 7B parameter model

AWQ

  • Paper mentions a significant speed-up compared to GPTQ whilst keeping similar, and sometimes even better, performance

Limitations

  • Newer architectures like Gemma or DeciLM doesn’t support in AWQ quantization yet.

Final thoughts

This article discusses various techniques to quantize models like GPTQ, AWQ and Bitsandbytes. It looks at the pros and cons of each method (GPTQ vs AWQ vs bitsandbytes), explains quantizing hugging-face model weights using these methods and finally use quantize weights for LLM inference. These techniques can help you create and use Large Language Models more effectively in real-world applications.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->