Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Acheiving 33rd Rank (of 186) in a NASA Harvest Field Boundary Detection Challenge in 50 Epochs
Latest   Machine Learning

Acheiving 33rd Rank (of 186) in a NASA Harvest Field Boundary Detection Challenge in 50 Epochs

Last Updated on March 30, 2023 by Editorial Team

Author(s): Ronny Polle

Originally published on Towards AI.

A full description with ablations and code.

source : Zindi.Africa

Outline

1. Problem Statement

2. Approach

3. Key Takeaways

Problem Statement

NASA Harvest Field Boundary Detection challenge is a machine learning challenge organized by Zindi.Africa in collaboration with NASA Harvest situated at the University of Maryland, and Radiant Earth Foundation.

According to the problem statement from Zindi, small farms produce about 35% of the world’s food,and are mostly found in low- and middle-income countries. Mapping these farms allows policy-makers to allocate resources and monitor the impacts of extreme events on food production and food security. Unfortunately, these field-level maps remain mostly unavailable and in low and middle-income countries , where the food insecurity risk is highest. Combining machine learning with Earth Observation data from satellites like the PlanetScope constellation can help improve agricultural monitoring cropland mapping, and disaster risk management for these small farms.

In this challenge, the objective is to design machine learning algorithms for classifying crop field boundaries using multispectral observations. In other words, your model is expected to accurately segment out boundary masks delineating areas where there is crop field versus no crop field.

Approach

This is by far one of the trickiest if not the trickiest machine learning problems I have encountered. This could be explained by a fact that this is my very first official encounter with satellite data. And that notwithstanding, I set out to learn all that I could find pertaining to this task.

The Data

Here, we are dealing with a classic Satellite Image Time Series (SITS) problem. The time series is provided for six months. However, one is at liberty to select subset of months for modeling.

The data comprises set of satellite imagery and labels tiled into 256 by 256 chips totaling up to 70 tiles. A total of 1532 individual field boundaries have been located and annotated in these 70 tiles. With this information, my initial hypothesis is that each of the 70 tiles will contain at least a single field boundary.

The final train size after split is 57 chips versus a test size of 13 chips. Labels were supplied only for fields that could be completely demarcated inside the chips.

Here is how the file structure of each chip looks like:

  • Satellite imagery containing 4 bands [B01, B02, B03, B03] mapped to 6 unique timestamps [2021_03, 2021_04, 2021_08, 2021_10, 2021_11, 2021_12]
  • Rasterized labels mapping to the fields in the train set.

Image Preprocessing

In this section, we will dive into the image preprocessing and scaling pipeline.

The intuition behind my choice of image pre-processing was aimed at primarily creating weakly delineated boundaries in the images to enable the models gain better visual perception of the fields and also to offer a better supervised learning procedure. The end-goal is geared towards making the label masks reasonably detectable within their corresponding images.

My final pre-processing pipeline was heavily inspired by first place winning solution for Crop Detection from Satellite Imagery competition organized by CV4A workshop at ICLR 2020. I encourage you to check it out here.

The idea can be laid down in steps below:

1. Grab a field

2. Apply a square root function on a field to take care of outliers

3. Compute the mean and standard deviation of result in step 2

4. Standardize result in step 3 per-channel. Thus, for each channel, subtract out the mean and divide result by the standard deviation

#loading the 4 bands of the image
tile = random.choice(train_tiles)
print(tile)

bd1 = rio.open(f"{train_source_items}/{dataset_id}_source_train_{tile}/B01.tif")
bd1_array = bd1.read(1)
bd2 = rio.open(f"{train_source_items}/{dataset_id}_source_train_{tile}/B02.tif")
bd2_array = bd2.read(1)
bd3 = rio.open(f"{train_source_items}/{dataset_id}_source_train_{tile}/B03.tif")
bd3_array = bd3.read(1)
bd4 = rio.open(f"{train_source_items}/{dataset_id}_source_train_{tile}/B04.tif")
bd4_array = bd4.read(1)

field = np.dstack((bd4_array, bd3_array, bd2_array, bd1_array))

field = np.sqrt(field)

# standardization
for c in range(field.shape[2]):
mean = field[:, :, c].mean()
std = field[:, :, c].std()
field[:, :, c] = (field[:, :, c] - mean) / std

And that’s all it takes!

Model

The model is a Unet-based architecture using pretrained Efficientnet-B7 as encoder.

Surprisingly, it offered good consistency over the loss, F1 and Recall metrics across both the train and validation sets.

The data was split based on a custom segmentation-based stratified split method.

Training is done utilizing AdamW optimizer with a learning rate of 1e-4 and weight decay of 1e-5, for only 50 epochs!

The truth is, I had originally planned to train for 1000 epochs; and it was only my last minute experiment before the competition ended. Also, my compute did not permit larger batch sizes. And additional data augmentation ideas could not be applied as my notebook was repeatedly crashing with only a custom mixup augmentation.

Key Takeaways

A summary of my experiments ( failed + successful )

Problem Formulations — I tried looking at the problem from different angles. And then I eventually discovered that binary segmentation offered consistently better results.

  • Multi-class segmentation
  • Multi-label segmentation
  • Regression
  • Binary segmentation
  • Sequence classification

Image Pre-processing Ablations

  • logarithmic/square root normalization of the bands pre-/post-stacking
  • min-max normalization of the bands pre-/ post-stacking
  • combination of logarithmic and min-max normalization
  • combination of square root and min-max normalization
  • standalone min-max, logarithmic and square root normalization pre-/ post-stacking

Finally, I discovered that applying standalone square root normalization (without min-max scaling) after stacking the 4 bands into a 4-dimensional field was better.

Model Ablations

  • Different pretrained model backbones — Efficient net variants(B1-B7), Resnet34, Resnet50, Seresnet34, Eefficientnet B5 + noisy student weights, VGG16 and VGG19-bn.
  • Multi-task Resnet34 with Attention-based pooling
  • Sequence-based custom encoder-decoder setup : Pre-trained image encoder (Efficientnet-b5) + Long short term memory (LSTM) decoder.
  • Residual Unet model trained in a multitask fashion

Loss Function Ablations

  • Binary Crossentropy
  • Categorical Crossentropy
  • Dice loss ( +/- per-image )
  • Tanimoto loss and Tanimoto dual loss
  • Weighted Categorical Crossentropy loss
  • Combo loss — dice + binary crossentropy ( I tried different weighting configs before landing on 0.9*dice + 0.1*bce)
  • Combo loss — multiclass dice loss + focal crossentropy ( 1 : 1 weighting)
  • Lovasz loss

Optimizers

  • Adam, AdamW**, SGD, RMSprop

** — offered best results together with stochastic gradient descent scheduler with warm restarts

Schedulers

  • Cosine annealing +/- warm restarts
  • Stochastic gradient descent scheduler with warm restarts **.

** — although this did better with initialized parameters, no further tuning was done.

Metric

  • F1 +/- threshold search**
  • Recall**
  • Dice metric
  • Accuracy metric

** — F1 + Recall metrics were the main metrics evaluated. With F1, upon threshold search, [0.1, 0.2] were found to improve only the local CV score and not the public score.

Fold splits

  • Simple stratified train-test split
  • Custom stratified splitter designed for segmentation tasks
  • K-Fold splitter
  • Multilabel Stratified Shuffle splitter (assigned ‘y’ the flattened masks (i.e 256 * 256 or 65536 pixels) )
  • GroupKFold splitter

What did not work ?

  • Generally speaking, the extent to which I explored all of the above experimental configurations was highly decided by my compute and internet access (It would be really nice if I could experiment more but offline ,on a much more powerful machine !).
  • Deciding to cast the task as multi-class and sequence classification problems was painfully non-trivial. I observed little consistency between local cross validation (and across folds) and public score, even after switching data splitters.
  • Especially, with the Multilabel splitter, the results were quite interesting but reflected poorly upon submission.
  • Tanimoto and its dual variant did not offer satisfactory results in terms of both multi-class single-output and multitask scenarios.
  • Snapshot ensembling worsened the performance.

A great deal of learning experience it was, with numerous uncharted territories that one could explore.

Link to full code is available in the reference list below.

Thank you for reading! Feedback is highly welcome.

References

[1] NASA Field Harvest Boundary Detection Challenge

[2] 2021 NASA Harvest Rwanda Baseline Model

[3] Stochastic Gradient Descent with Warm Restarts (SGDR)

[4] Stratified Split for Semantic Segmentation

[5] A Spatio-Temporal Deep Learning-based Crop Classification Model for Satellite Imagery

[6] Link to Full Code

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->