Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

How did Binary Cross-Entropy Loss Come into Existence?
Latest   Machine Learning

How did Binary Cross-Entropy Loss Come into Existence?

Last Updated on July 17, 2023 by Editorial Team

Author(s): Towards AI Editorial Team

Originally published on Towards AI.

Exploring the Genesis of Binary Cross-Entropy Loss Function

Image by Gerd Altmann from Pixabay

Author(s): Pratik Shukla

“You always pass failure on the way to success.” — Mickey Rooney

Table of Contents:

  1. Introduction
  2. Properties of the binary classification problem
  3. Basics of Bernoulli trials
  4. Probability of multiple independent events
  5. Properties of logarithm
  6. Why do we take a log of Bernoulli trails
  7. Why do we take the negative log of Bernoulli trials
  8. Single Bernoulli trial
  9. Multiple independent Bernoulli trials
  10. Scaling a function
  11. Conclusion
  12. References and resources

Introduction:

In this tutorial, we will derive the equation of the binary cross-entropy loss. The equation of the binary cross-entropy loss is given as follows.

Figure — 1: The equation of Binary Cross Entropy Loss

We will start with a single Bernoulli trial and make our way through the complicated mathematical formulas involved to derive the equation of the binary cross-entropy loss. Let’s start!

The Binary Cross-Entropy Loss function is a fundamental concept in the field of machine learning, particularly in the domain of deep learning. It is a mathematical function that measures the difference between predicted probabilities and actual binary labels in classification tasks. The Binary Cross-Entropy Loss function has become a staple in the training of neural networks, but its origins and development are not always well-known. In this blog, we will explore the history and evolution of the Binary Cross-Entropy Loss function, delving into its origins and discussing its applications in modern machine learning. By understanding the history of this crucial function, we can gain a better understanding of its purpose and potential for future research.

Properties of binary classification problem:

Each binary classification problem has the following properties:

  1. Each example of the binary classification dataset belongs to one of the two complimentary classes.
  2. The result of one example does not affect the result of any other examples. It means that each example is independent of the other.
  3. All the examples are generated from the same underlying distribution.

In probability theory, if a dataset follows the 2nd and 3rd properties, then the examples are said to be independent and identically distributed (i.i.d). Considering the i.i.d. nature of the data helps to make the calculations much more straightforward.

Basics of Bernoulli trials:

Now, in binary classification problems, we have to predict the value only for one class because the probability of the negative class can be easily derived from it. It means that suppose we are performing a binary classification problem, and our outputs are dog or cat. We only need to predict the probability of a particular example being a dog. The probability of that specific example being a cat can be easily derived from it.

Figure — 2: Probability of an example being in class 0 and class 1

We can summarize this concept using the following formula.

Figure — 3: A summary of an example being in class 0 and class 1

Here we know that ŷ is the predicted value. A good binary classifier should produce a high value of ŷ (ideally 1) when the example has a positive label (y=1). Also, it should produce a low value of ŷ (ideally 0) when the example has a negative label (y=0). So, our goal should be the following.

Produce a high value of ŷ when y=1

Produce a low value of ŷ when y=0

Next, based on that, we can say that we need to maximize ŷ when y=1, and we need to minimize ŷ when y=0. We can say the same thing in other words as well.

Maximize ŷ when y=1

Maximize 1-ŷ when y=0

Instead of having two different equations for the positive and negative classes, we can create a simplified version that works for both classes.

Figure — 4: The equation for a single Bernoulli trial

The single-line expression shown in the above figure is known as a Bernoulli trial. We need to calculate it for each of the data points. After we have the results for each Bernoulli trial, we can get the final result by their multiplication.

Probability of multiple independent events:

For independent events, we can say the following.

Figure — 5: Probability of multiple independent events

Properties of logarithm:

1. Product rule:

Figure — 6: Product rule for logarithms

2. Power rule:

Figure — 7: Power rule for logarithms

Why do we take a log of Bernoulli trials?

Alright! So, as of now, we have arrived at the following equation.

Figure — 8: Equation for a single Bernoulli trial

Now, as we have discussed, we will have to find the value of each Bernoulli trial. After we have the value of each Bernoulli trial, we will find their product of them. Now, we know that since ŷ is the probability value, its value will always be between 0 and 1. So, when we multiply many values between 0 and 1, the final product might get infinitesimal or next to zero. So, to avoid this problem, we usually perform the log operation. Here note that the product rule of logarithms converts the multiplication into summation. So, instead of finding the product of values between 0 and 1, we find their summation. This is how we can avoid the problem of getting 0 as an output every time.

Now, let’s take an example to understand it in a better way.

We can see this problem and its solution in the following example.

Why do we take a negative log of Bernoulli trial?

Alright! So, after applying the natural logarithm to the Bernoulli Distribution equation, we get the following equation.

Figure — 9: Log of a single Bernoulli trial

Here, note that y is the actual label of the data, and y can take only one of the two possible values (0 or 1). The equation basically gives us the loss value. Remember that our ultimate goal is to find the optimum loss value (ideally 0).

Figure — 10: Summary of log of a Bernoulli trial

Based on the above equation, we can say that we have to minimize the value of log(ŷ) and log(1-ŷ). Now we know that ŷ represents the value of probability, so the value of ŷ can be in the interval of [0,1]. Now, let’s plot the graph of log(ŷ) and log(1-ŷ).

Figure — 11: Graphs of log(x) and log(1-x)

Here, our goal is to find the optimum loss value, which should ideally be 0. So, from the graphs, we can see that we have to maximize the function to find the optimum values here. We generally try to minimize the function or use the gradient descent algorithm in the machine learning algorithm. But, as shown in the above graphs, the curves are concave. So, here we’ll have to use the gradient ascent algorithm to reach the optimal points.

To keep the standard convention of using the gradient descent algorithm, we find the negative of the log function. So, instead of finding the function’s maximum, we will find the minimum of the function. Let’s see how it works.

Figure — 12: Negative log of a single Bernoulli trial
Figure — 13: Graphs of -log(x) and -log(1-x)

In the above graphs, we can see that we will find the optimum values at the minimum of the graphs. So, here we can use the gradient descent algorithm to find the optimal parameters.

Before we move on to multiple individual Bernoulli trials, let’s first see how this concept works for a single Bernoulli trial.

Single Bernoulli Trial:

Step — 1: Applying log

Here we are taking the original formula and applying a log to it.

Figure — 14: Applying log to the equation of a single Bernoulli trial

After applying the natural log to the Bernoulli Distribution, our formula is simplified into a sum of the log of probabilities.

Step — 2: Finding the negative of log

Next, we are finding the negative of the above-given formula.

Figure — 15: Finding the negative of the log of the equation of a single Bernoulli trial

Multiple Independent Bernoulli Trials:

Next, we have to apply this concept to multiple independent Bernoulli trials. As we discussed before, we will need to find the product of the probabilities of each independent Bernoulli trial.

Figure — 16: Equation for multiple independent Bernoulli trials

Step — 1: Applying log

Next, we will apply the log to the product of the probabilities of each independent Bernoulli trial. Here note that using the log converts the product into summation.

Figure — 17: Log of multiple independent Bernoulli trials

Step — 2: Finding the negative of log

Next, we will find the negative log of the probabilities of each independent Bernoulli trial.

Figure — 18: Negative log of multiple independent Bernoulli trials

Scaling a Function:

Now, let’s understand how scaling a function does not change its maximum or minimum point with the help of an example. Let’s say our function is y=X². Now, we will scale this function by a factor of k. Let’s see the graphs of the original and scaled functions to find the minimum point for each.

Figure — 19: Functions with their minimum points

Here we can see that scaling a function does not change its maximum or minimum point. Now, let’s plot the graphs of these functions to look visually at them.

Figure — 20: Graphs of x², 10x², and 0.1x²

We can see that scaling a function does not change its minimum or maximum points. Now, we will divide our log-likelihood function by our dataset’s total number of examples (n).

Figure — 21: Binary Cross Entropy Loss function

The above formula is known as the Binary Cross Entropy function.

Conclusion:

In conclusion, the Binary Cross-Entropy Loss function has become a critical component of modern machine learning, particularly in deep learning applications. Its origins can be traced back to the early days of information theory and statistical learning, where researchers were interested in measuring the accuracy of classification models. Over the years, the Binary Cross-Entropy Loss function has undergone significant development and refinement, leading to its current widespread use in training neural networks. By understanding the history and evolution of this important function, we can gain a deeper appreciation for its purpose and potential for future research. As machine learning continues to evolve, it is likely that the Binary Cross-Entropy Loss function will continue to play a crucial role in advancing the field.

Buy Pratik a Coffee!

Citation:

For attribution in academic contexts, please cite this work as:

Shukla, et al., “How did Binary-Cross Entropy Loss Come into Existence?”, Towards AI, 2023

BibTex Citation:

@article{pratik_2023, 
title={How did Binary Cross-Entropy Loss Come into Existence?},
url={https://pub.towardsai.net/probability-vs-likelihood-a79335c985f7},
journal={Towards AI},
publisher={Towards AI Co.},
author={Pratik, Shukla},
editor={Binal, Dave},
year={2023},
month={Mar}
}

References and Resources:

  1. Binary Entropy Function

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->