Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Sales Prediction| Using Time Series| End-to-End Understanding| Part -2
Latest   Machine Learning

Sales Prediction| Using Time Series| End-to-End Understanding| Part -2

Last Updated on July 25, 2023 by Editorial Team

Author(s): Yashashri Shiral

Originally published on Towards AI.

Sales PredictionU+007C Using Time SeriesU+007C End-to-End UnderstandingU+007C Part -2

Sales Forecasting determines how the company invests and grows to create a massive impact on company valuation. This is part 2, and you will learn how to do sales prediction using Time Series.

Please refer to Part 1– to understand what is Sales Prediction/Forecasting, the Basic concepts of Time series modeling, and EDA

I’m working on Part 3 where I will be implementing Deep Learning and Part 4 where I will be implementing a supervised ML model.

In this part, we will deep dive into the Time Series model implementation

Time-Series forecasting

Now let’s look at the moving average, as it gives you an overall idea of the trends in the dataset, it’s useful in long-term forecasting.

Steps to implement the Time-Series model and its importance:

steps to implement time series model

1. Data Preparation

Collect data, Understand features

2. Visualize Data

Rolling mean/ Standard Deviation— helps in understanding short-term trends in data and outliers.

The rolling mean is an average of the last ’n’ data points and the rolling standard deviation is the standard deviation of the last ’n’ points.

3. Time Series Decomposition

Helps you understand historical data by deconstructing time series into Trend, Seasonal, and Residual (anything that is not captured by Trend & Seasonality).

Choose an additive model when seasonal variation is relatively constant over time. And choose the multiplicative model if seasonal variation increases over time.

4. Make Data Stationary

In a previous article I explained what is stationary, but now understand why it’s important to have stationary data. If our data is not stationary then inferences drawn from such data will not be reliable as it will keep on changing with time. And statistical procedure applied in time series analysis makes an assumption that the underlying time-series data is stationary.

Generally, real-life data is not stationary, and Augment-Dickey Fuller (ADF) test or Kwiatkowski- Phillips-Schmidt-Shin(KPSS) test helps in understanding if data is stationary or not.

So, you can make data stationary by taking a rolling average or difference in the data.

5. Autocorrelation —

Autocorrelation is when data points are correlated with each other, which can be misleading while performing statistical analysis. If the dataset is autocorrelated, it will appear to have a stronger correlation between two variables than it actually does. Data is positively correlated i.e. when one data point increases the other also increases. Data is negatively correlated i.e. when one data increases then another data point decreases

One can apply an autoregressive model to remove autocorrelation.

6. Time Series Model implementation —

I have explained a couple of models in the previous article. But if you want a basic understanding of more time series models refer to this article by Davide Burba.

7. Time Series model evaluation —

You can’t use general evaluation metrics such as RMSE scores for time series models. Use the following methods-

  1. Validate/compare the predictions of your model against actual data
  2. Compare the results of your model with a simple moving average
  3. Use k-fold cross-validation to test the generalized accuracy of your model
  4. Use rolling windows to test how well the model performs on the data that is one step or several steps ahead of the current time point

Time-Series model in python

In this article, we will start with the second step as we already have a basic understanding of data(refer to Part 1)

Step 2 — Visualize Data

Rolling Mean and standard deviation —

Low Standard Deviation — Data is closely clustered around mean

High Standard Deviation — Data is scattered over a range of values

Rolling mean and standard deviation of weekly sales

As you can see in the above figure standard deviation value is lower which means Data is closely clustered around mean

Step 3 — Time Series Decomposition

From previous visualizations and understanding, I’m choosing the ‘Multiplicative’ model as data have some seasonal component. (I would have used the additive model if the data would have had an upward or downward trend)

Decomposition of Weekly Sales

As you can see in the above figure During Nov and December Weekly sales go high that’s the trend and have cyclic seasonality.

Step 4 — Make data stationary

In simple words, stationary data means, mean and covariance don’t change over time.

ADF– is a unit root test and does not always have a trend component.

Hypothesis for ADF

Null Hypothesis: Series is non-stationary or series has a unit root

Alternative Hypothesis: Series is stationary or series has no unit root

If the Null hypothesis cannot be rejected (and p-value >0.05) then the data is non-stationary.

ADF Test

As you can see above p-value is less than 0.05 i.e. we can reject the Null hypothesis and the data is stationary.

Now before I move on to KPSS just a note, KPSS cannot be used interchangeably with ADF.

KPSS Test —

A major difference between KPSS and ADF is the capability of the KPSS test to check for stationary in the ‘presence of the deterministic trend’ i.e. slope of the trend in the series does not change permanently.

Hypothesis for KPSS

Null Hypothesis: Series is trend stationary or series has no unit root.

Alternative Hypothesis: The series is non-stationary or the series has a unit root.

If the Null hypothesis cannot be rejected (and p-value >0.05) means the time series does not have a unit root, meaning it is trend stationary.

KPSS Test

As you can see p-value is greater than 0.05 i.e. Data is trend stationary as well. Our data is stationary in both tests.

It is always better to apply both tests so that it can be ensured that the series is truly stationary. Possible outcomes of applying these stationary tests are as follows:

Case 1: Both tests conclude that the series is not stationary — The series is not stationary

Case 2: Both tests conclude that the series is stationary — The series is stationary

Case 3: KPSS indicates stationarity and ADF indicates non-stationarity — The series is trend stationary. The trend needs to be removed to make the series strictly stationary. The detrended series is checked for stationarity.

Case 4: KPSS indicates non-stationarity and ADF indicates stationarity — The series is difference stationary. Differencing is to be used to make series stationary. The differenced series is checked for stationarity.

Step 5 — Autocorrelation

ACF measures the correlation between a lagged version of the variable while PACF measures the correlation between a lagged version of the variable after accounting for any correlations due to previous lags.

ACF of Weekly Sales

As you see in the graph above and below ACF and PACF both are declining gradually with every 5th lag. The figure shows Seasonal ARMA with a 5-period cycle. Usually, Seasonal-AR(1) and Seasonal-MA(1) lags are enough to account for such behavior.

PACF of Weekly Sales

Step 6 — Time Series model implementation

Now as we understand from the autocorrelation plots we know the best model will be SARIMA.

SARIMA (p, d, q) -non-seasonal (P, D, Q)m seasonal components

You can see that we add P, D, and Q for the seasonal portion of the time series. They are the same terms as the non-seasonal components, as they involve backshifts of the seasonal period. And ‘m’ is the number of observations.

Even though we know from ACF and PACF which components to use it’s always better to test multiple scenarios to get the lowest value of AIC. AIC is a mathematical method for evaluating how well the model fits the data it was generated from.

There are 3 different packages that you can use — statsmodels, statespace, and pmdarima(which automates the search model order)

Evaluating AIC using statsmodels
AIC

As you can (3,4,3) and (3,4,3,6) gives us the lowest AIC. Let’s go ahead and apply this in the SARIMA model.

SARIMA with lowest AIC

The components we choose from the lowest AIC value aren’t giving the best results. The lowest value of AIC does not necessarily give the best prediction for SARIMA models. AIC is used to measure the relative quality of a model based on the amount of information it contains. In addition, the AIC value alone does not take into account any other factors that may affect the quality of the predictions, such as the data used to train the model.

Now I’m selecting orders by trial and error method depending on how it’s generating results. And using SARIMAX model

SARIMAX model
Summary of SARIMAX

Now let’s understand this summary, we can evaluate residual test statistics to evaluate model performance

Ljung-Box: Null Hypothesis — There is no correlation in the residuals

Jarque-Bera: Null Hypothesis — Residuals are normally distributed

Prob(Q) is 0.14>0.05, we can’t reject the null hypothesis i.e. so residuals are correlated. Correlated residuals indicate that the model is not accurately predicting future values based on past data.

Prob(JB) is 0.00<0.05, we reject the null hypothesis i.e. residuals are not normally distributed. Now this means that the errors that model makes are not consistent across variables and observations. This is the indicator that it’s not a better-performing model. If the residuals are not normally distributed, it may indicate that the model is overfitting the data or that it is not capturing all of the relevant patterns in the data.

SARIMAX model prediction

As you can see even though the AIC value is 1739 SARIMAX model is predicting better results with order -(1,2,1) and seasonal order(1,1,2,5) than when AIC was the lowest but as we saw in test statistics still not the best model.

Let’s plot diagnostics. To understand model performance in detail

Residual & Histogram

Standardize Residual — We do see some sort of residual pattern, indicating that the model is not accurately predicting the observed values.

Histogram plus estimated density — The histogram shows the measured distribution of the residuals while the orange line shows the KDE curve (smoothed version of the histogram). The green line shows a normal distribution. For a good model, the orange line should be similar to the green line. The orange curve is not very similar to the green one.

QQ & Correlogram

Normal QQ — Most of the data points should lie in a straight line, indicating a normal distribution of the residuals. Which is not the case in our scenario.

Correlogram — If the points or lines are close together, this indicates a strong correlation between the variables. If the points or lines are spread out, this indicates a weak correlation.

Step 7 — Model Evaluation

Let’s calculate the mean absolute error.

MAE value

MAE is 2256 which is a really high value.

To conclude, the time series model isn’t predicting sales with a lower MAE value. You can take a difference in sales and use that in the SARIMA model and follow the same steps. I tried doing that but that reduced the MAE value but still, it isn’t the best.

Sales diff SARIMA
Weekly sales difference
MAE of sales diff

Now as we implemented the time series approach let’s build a Deep learning model and a supervised model to see if it performs better than this or not.

Please give it a clap if you find it informative and mention in the comment if I should improve anything.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->