Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Machine Learning Project in Python Step-By-Step – Predicting Employee Attrition
Latest

Machine Learning Project in Python Step-By-Step – Predicting Employee Attrition

Last Updated on February 22, 2023 by Editorial Team

Author(s): Fares Sayah

Originally published on Towards AI.

Machine Learning Project in Python Step-By-Step — Predicting Employee Attrition

AI for Human Resources: Predict attrition of your valuable employees using Machine Learning

Photo by Marvin Meyer on Unsplash

Human Resources & AI

An organization’s human resources (HR) function deals with the most valuable asset: people. Human resources play an important role in the success of a business. Human resources face many challenges, and AI can help automate and solve some of these challenges.

AI can help Human Resources with several tasks. In talent acquisition, AI can help by filtering resumes that best fit the job description and talent development by recommending programs that suites each employee’s skills and goals.

On the other hand, AI may face a lot of challenges in HR, like Low volume of historical data, Privacy concerns of employees, and low priority for AI projects.

Predicting Employee Attrition

Employee attrition is one of the major concerns for an HR organization because it will cause losses of expertise, losses of productivity, customer goodwill, hiring costs, training costs, and so on. Employee leaves due to various reasons such as compensation, work satisfaction, performance, supervisors, and so on.

First of all, HR needs to collect comprehensive data about an employee, such as education, salary, experience… We also need data from supervisors such as performance, relationships, promotions…

After that, HR can use this information to predict employees’ tendency to leave and take preventive action.

Exploratory Data Analysis

In-depth EDA can be found in the full notebook: IBM HR Analytics💼Employee Attrition & Performance

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Age 1470 non-null int64
1 Attrition 1470 non-null object
2 BusinessTravel 1470 non-null object
3 DailyRate 1470 non-null int64
4 Department 1470 non-null object
5 DistanceFromHome 1470 non-null int64
6 Education 1470 non-null int64
7 EducationField 1470 non-null object
8 EmployeeCount 1470 non-null int64
9 EmployeeNumber 1470 non-null int64
10 EnvironmentSatisfaction 1470 non-null int64
11 Gender 1470 non-null object
12 HourlyRate 1470 non-null int64
13 JobInvolvement 1470 non-null int64
14 JobLevel 1470 non-null int64
15 JobRole 1470 non-null object
16 JobSatisfaction 1470 non-null int64
17 MaritalStatus 1470 non-null object
18 MonthlyIncome 1470 non-null int64
19 MonthlyRate 1470 non-null int64
20 NumCompaniesWorked 1470 non-null int64
21 Over18 1470 non-null object
22 OverTime 1470 non-null object
23 PercentSalaryHike 1470 non-null int64
24 PerformanceRating 1470 non-null int64
25 RelationshipSatisfaction 1470 non-null int64
26 StandardHours 1470 non-null int64
27 StockOptionLevel 1470 non-null int64
28 TotalWorkingYears 1470 non-null int64
29 TrainingTimesLastYear 1470 non-null int64
30 WorkLifeBalance 1470 non-null int64
31 YearsAtCompany 1470 non-null int64
32 YearsInCurrentRole 1470 non-null int64
33 YearsSinceLastPromotion 1470 non-null int64
34 YearsWithCurrManager 1470 non-null int64
dtypes: int64(26), object(9)
memory usage: 402.1+ KB

We notice that ‘EmployeeCount', 'Over18', 'StandardHours' have only one unique value and 'EmployeeNumber' has 1470 unique values. These features aren't useful for us, So we are going to drop those columns.

Conclusions:

  • The workers with low JobLevel, MonthlyIncome, YearAtCompany, and TotalWorkingYears are more likely to quit their jobs.
  • BusinessTravel : The workers who travel a lot are more likely to quit than other employees.
  • Department : The worker in Research & Development are more likely to stay than the workers in other departments.
  • EducationField : The workers with Human Resources and Technical Degree are more likely to quit than employees from other fields of education.
  • Gender : The Male are more likely to quit.
  • JobRole : The workers in Laboratory Technician, Sales Representative, and Human Resources are more likely to quit the workers in other positions.
  • MaritalStatus : The workers who have Single marital status are more likely to quit the Married, and Divorced.
  • OverTime : The workers who work more hours are more likely to quit than others.

Correlation Matrix

pngpng

Analysis of correlation results (sample analysis):

  • Monthly income is highly correlated with Job level.
  • The job level is highly correlated with total working hours.
  • Monthly income is highly correlated with total working hours.
  • Age is also positively correlated with total working hours.
  • Marital status and stock options level are negatively correlated

Data Processing

Converting categorical features to machine-readable data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Columns: 136 entries, Age to YearsWithCurrManager_17
dtypes: int64(9), uint8(127)
memory usage: 285.8 KB

Checking for duplicate records and features

(1470, 136)
(1470, 136)

92

Applying machine learning algorithms

What defines success?

0.8390022675736961

We have imbalanced data, so if we predict that all our employees will stay we’ll have an accuracy of 83.90%.

===============TRAIN=================
Staying Rate: 83.87%
Leaving Rate: 16.13%
===============TEST=================
Staying Rate: 83.90%
Leaving Rate: 16.10%

Logistic Regression

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[849 14]
[ 59 107]]
ACCURACY SCORE:
0.9291
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.94 0.88 0.93 0.91 0.93
recall 0.98 0.64 0.93 0.81 0.93
f1-score 0.96 0.75 0.93 0.85 0.92
support 863.00 166.00 0.93 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[348 22]
[ 43 28]]
ACCURACY SCORE:
0.8526
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.89 0.56 0.85 0.73 0.84
recall 0.94 0.39 0.85 0.67 0.85
f1-score 0.91 0.46 0.85 0.69 0.84
support 370.00 71.00 0.85 441.00 441.00

png

Random Forest Classifier

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[863 0]
[ 0 166]]
ACCURACY SCORE:
1.0000
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 1.00 1.00 1.00 1.00
f1-score 1.00 1.00 1.00 1.00 1.00
support 863.00 166.00 1.00 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[362 8]
[ 63 8]]
ACCURACY SCORE:
0.8390
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.85 0.50 0.84 0.68 0.80
recall 0.98 0.11 0.84 0.55 0.84
f1-score 0.91 0.18 0.84 0.55 0.79
support 370.00 71.00 0.84 441.00 441.00

Fitting 5 folds for each of 648 candidates, totalling 3240 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 42 tasks | elapsed: 16.8s
[Parallel(n_jobs=-1)]: Done 192 tasks | elapsed: 1.1min
[Parallel(n_jobs=-1)]: Done 442 tasks | elapsed: 2.6min
[Parallel(n_jobs=-1)]: Done 792 tasks | elapsed: 4.8min
[Parallel(n_jobs=-1)]: Done 1242 tasks | elapsed: 8.2min
[Parallel(n_jobs=-1)]: Done 1792 tasks | elapsed: 11.8min
[Parallel(n_jobs=-1)]: Done 2442 tasks | elapsed: 15.3min
[Parallel(n_jobs=-1)]: Done 3192 tasks | elapsed: 20.9min
[Parallel(n_jobs=-1)]: Done 3240 out of 3240 | elapsed: 21.3min finished
TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[863 0]
[ 15 151]]
ACCURACY SCORE:
0.9854
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.98 1.00 0.99 0.99 0.99
recall 1.00 0.91 0.99 0.95 0.99
f1-score 0.99 0.95 0.99 0.97 0.99
support 863.00 166.00 0.99 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[360 10]
[ 63 8]]
ACCURACY SCORE:
0.8345
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.85 0.44 0.83 0.65 0.79
recall 0.97 0.11 0.83 0.54 0.83
f1-score 0.91 0.18 0.83 0.54 0.79
support 370.00 71.00 0.83 441.00 441.00

pngpng

Support Vector Machine

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[855 8]
[ 47 119]]
ACCURACY SCORE:
0.9466
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.95 0.94 0.95 0.94 0.95
recall 0.99 0.72 0.95 0.85 0.95
f1-score 0.97 0.81 0.95 0.89 0.94
support 863.00 166.00 0.95 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[345 25]
[ 44 27]]
ACCURACY SCORE:
0.8435
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.89 0.52 0.84 0.70 0.83
recall 0.93 0.38 0.84 0.66 0.84
f1-score 0.91 0.44 0.84 0.67 0.83
support 370.00 71.00 0.84 441.00 441.00

Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 36 out of 36 | elapsed: 6.6min finished
GridSearchCV(cv=3, estimator=SVC(random_state=42),
param_grid=[{'C': [1, 10, 100, 1000], 'kernel':['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
'kernel': ['rbf']}],
scoring='roc_auc', verbose=1)
TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[862 1]
[ 6 160]]
ACCURACY SCORE:
0.9932
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.99 0.99 0.99 0.99 0.99
recall 1.00 0.96 0.99 0.98 0.99
f1-score 1.00 0.98 0.99 0.99 0.99
support 863.00 166.00 0.99 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[346 24]
[ 42 29]]
ACCURACY SCORE:
0.8503
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.89 0.55 0.85 0.72 0.84
recall 0.94 0.41 0.85 0.67 0.85
f1-score 0.91 0.47 0.85 0.69 0.84
support 370.00 71.00 0.85 441.00 441.00

png

XGBoost Classifier

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[863 0]
[ 0 166]]
ACCURACY SCORE:
1.0000
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 1.00 1.00 1.00 1.00
f1-score 1.00 1.00 1.00 1.00 1.00
support 863.00 166.00 1.00 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[360 10]
[ 52 19]]
ACCURACY SCORE:
0.8594
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.87 0.66 0.86 0.76 0.84
recall 0.97 0.27 0.86 0.62 0.86
f1-score 0.92 0.38 0.86 0.65 0.83
support 370.00 71.00 0.86 441.00 441.00

pngpng

LightGBM

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[863 0]
[ 0 166]]
ACCURACY SCORE:
1.0000
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 1.00 1.00 1.00 1.00
f1-score 1.00 1.00 1.00 1.00 1.00
support 863.00 166.00 1.00 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[357 13]
[ 53 18]]
ACCURACY SCORE:
0.8503
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.87 0.58 0.85 0.73 0.82
recall 0.96 0.25 0.85 0.61 0.85
f1-score 0.92 0.35 0.85 0.63 0.82
support 370.00 71.00 0.85 441.00 441.00

png

CatBoost

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[863 0]
[ 17 149]]
ACCURACY SCORE:
0.9835
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.98 1.00 0.98 0.99 0.98
recall 1.00 0.90 0.98 0.95 0.98
f1-score 0.99 0.95 0.98 0.97 0.98
support 863.00 166.00 0.98 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[361 9]
[ 58 13]]
ACCURACY SCORE:
0.8481
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.86 0.59 0.85 0.73 0.82
recall 0.98 0.18 0.85 0.58 0.85
f1-score 0.92 0.28 0.85 0.60 0.81
support 370.00 71.00 0.85 441.00 441.00

png

AdaBoost

TRAINIG RESULTS: 
===============================
CONFUSION MATRIX:
[[843 20]
[ 88 78]]
ACCURACY SCORE:
0.8950
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.91 0.80 0.90 0.85 0.89
recall 0.98 0.47 0.90 0.72 0.90
f1-score 0.94 0.59 0.90 0.77 0.88
support 863.00 166.00 0.90 1029.00 1029.00
TESTING RESULTS:
===============================
CONFUSION MATRIX:
[[344 26]
[ 52 19]]
ACCURACY SCORE:
0.8231
CLASSIFICATION REPORT:
0 1 accuracy macro avg weighted avg
precision 0.87 0.42 0.82 0.65 0.80
recall 0.93 0.27 0.82 0.60 0.82
f1-score 0.90 0.33 0.82 0.61 0.81
support 370.00 71.00 0.82 441.00 441.00

png

Comparing Models Performance

RANDOM FOREST                  roc_auc_score: 0.543
XGBOOST roc_auc_score: 0.620
LOGISTIC REGRESSION roc_auc_score: 0.546
SUPPORT VECTOR MACHINE roc_auc_score: 0.500
LIGHTGBM roc_auc_score: 0.609
CATBOOST roc_auc_score: 0.579
ADABOOST roc_auc_score: 0.599

Conclusion

In this article, we learned how to develop a machine-learning model to predict employee attrition. We used a variety of ML algorithms, including ANNs and Tree-Based models. The models tend to overfit the training data because of the problem's complexity and the small amount of data.


Machine Learning Project in Python Step-By-Step — Predicting Employee Attrition was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->