Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Exploratory Data Analysis of My Chess Dataset Using Python Plotly
Latest

Exploratory Data Analysis of My Chess Dataset Using Python Plotly

Last Updated on January 30, 2023 by Editorial Team

Author(s): Muttineni Sai Rohith

Originally published on Towards AI.

Our Mind, In its place, is a Hell of Heaven Or Heaven of Hell

You might be wondering, why I started with the above line for an Article based on EDA. Here is Why — It is around 3 AM here in India, I am unable to sleep and I just finished a chess game. Irrespective of the result, My Brain now wants me to Analyse my chess statistics at this time and derive some kind of information using which I can improve my Game better. One question I had to my Brain is Why? Why you want to do it? And the answer— because you can do it using Python Plotly. And I am just a slave of My Brain and that brought today’s article.

Photo by GR Stocks on Unsplash

Chess is one game That I have always admired, and in the last 3–4 months, I started playing it daily. Fortunately, I chose chess.com to play online chess, and today when I wished to do some analysis, I found my dataset archive on the website. Along with our own games Dataset, this beautiful site provides us with Archives of many famous chess players. But nothing comes without effort. I had to aggregate and convert my Data into raw files to prepare the final Dataset. Here is a sample snapshot of the raw Data

Raw Data Snapshot

I am not going to dig deep into the Data preparation from the raw data but I have uploaded all the raw files and Notebook to convert these raw files into the Final Dataset in the GitHub link mentioned here. This site also contains the Final Dataset and Script used to do the Analysis.

Here are a few things that I wanted to do when I say Analyse my Chess Games —

  • How Good am I as a White Player and a Black Player? Is Being a White player really an Advantage?
  • Is my Game mainly depend on my Mood?
  • How does the first Move affect the Game?
  • How does rating affect the outcome?
  • Does Time is taken and Move Count provide some Insights?
  • Finally, here are Some Stats that I can derive from Data.

Loading Data

You can find the Dataset used in this article here. We will be using Pandas in this article to load the Data and Perform Operations.

import pandas as pd
data = pd.read_csv("/content/chess_stats.csv")
data.head(5)
Snapshot of Data

Game Statistics

What’s the matter of doing an Analysis when we do not start with the Wins/Loss Count? Let’s see that First —

import plotly.graph_objects as go

GameResult = dict(data["GameResult"].value_counts().items())

fig = go.Figure(data=[go.Pie(labels=list(GameResult.keys()), values=list(GameResult.values()), pull=[0., 0., 0.4])])
fig.update_layout(
autosize=False,
width=400,
height=400,
paper_bgcolor="lightgrey",
)
fig.show()
Plotly Chart

Ok, As you can see, my Win Percentage is slightly greater than my loss%.

fig = px.bar(x=list(GameResult.values()), y=list(GameResult.keys()), color = list(GameResult.keys()), text_auto=True)
fig.update_layout(
autosize=False,
width=400,
height=400
)
fig.show()
Result Statistics

As you can see I have won 159 Games, lost 151 and 12 Games are drawn. Now let’s check the stats based on the Color —

As White Player

data_white = data[data["White"] == "chandurohitheee"]
GameResult_white = dict(data_white["GameResult"].value_counts().items())

fig = go.Figure(data=[go.Pie(labels=list(GameResult_white.keys()), values=list(GameResult_white.values()), pull=[0., 0., 0.4])])
fig.update_layout(
autosize=False,
width=400,
height=400,
paper_bgcolor="lightgrey",
)
fig.show()
As White Player Stats

As Black Player

data_black = data[data["Black"] == "chandurohitheee"]
GameResult_black = dict(data_black["GameResult"].value_counts().items())

fig = go.Figure(data=[go.Pie(labels=list(GameResult_black.keys()), values=list(GameResult_black.values()), pull=[0., 0., 0.4])])
fig.update_layout(
autosize=False,
width=400,
height=400,
paper_bgcolor="lightgrey",
)
fig.show()
As Black Player Stats

Don’t let the colors fool you when I played as a White Player, My Win percentage was 52%, while I played as a Black Player, My Win Percentage was 46.6% which is way less.
So From the next time, I should play more Black first to improve my Game. Now let's, Do some analysis based on the first moves —

Based on First Moves

Let’s check the ratio of First Moves that are involved in my Games —


fig = go.Figure(data=[go.Pie(labels=list(data["first_move"].value_counts().keys()), values=list(data["first_move"].value_counts().values), pull=[0., 0.1, 0.1])])
fig.update_layout(
autosize=True,
width=400,
height=400,
paper_bgcolor="lightgrey",
)
fig.show()
First Moves

As we can see, “e4-e5" is the most played move, and very few times — “e4-d5” and “e4-c5" is played, and the rest all are just rare occurrences. Now Let’s check the Game Result using First Moves —

import plotly.express as px

fig = px.histogram(data, x="first_move", y="GameResult", color='GameResult', barmode='group', histfunc='count',
color_discrete_map={'won':'green',
'loss':'red',
'draw':'yellow'}, text_auto = True)
fig.show()

As we can see, I have played somewhat well when “e4-e5” is the first move, and rest I need to work on and improve.

Now Let’s be specific and check my first move as White and the response I got —

import plotly.express as px

data_white = data[data["White"] == "chandurohitheee"]

fig = px.histogram(data_white, x="first_move", y="GameResult", color='GameResult', barmode='group', histfunc='count', color_discrete_map={'won':'green',
'loss':'red',
'draw':'yellow'}, text_auto = True)
fig.show()
As White — First Move Stats

It’s surprising, I didn’t realize this earlier, But if you zoom the image, then you can see that I have only played one first move — “Moving pawn to e4”. Man, I need to learn some moves from now on. But wait, When I got “Pawn moved to e5” as a response, My win percentage was way good. But I need to explore other approaches.

Now it's time to check my responses to the first move as a Black Player —

import plotly.express as px

data_black = data[data["Black"] == "chandurohitheee"]

fig = px.histogram(data_black, x="first_move", y="GameResult", color='GameResult', barmode='group', histfunc='count', color_discrete_map={'won':'green',
'loss':'red',
'draw':'yellow'}, text_auto = True)
fig.show()
As Black — First Move stats

Similar to my Statistics as a Black Player, I need to work on a few approaches, But I understood that I need to exploit the (d4-Nc6) Combination and (e4-d5) combination More.

Based on Dates

It is obvious that Chess is a mind game, and when your mind is in place, we can win more and vice versa, But let’s prove that now —

import plotly.express as px

fig = px.histogram(data, x="Date", y="GameResult", color='GameResult', barmode='group', histfunc='count', color_discrete_map={'won':'green',
'loss':'red',
'draw':'yellow'}, text_auto = "%.2s")

fig.show()
Result vs Dates

As we can see, on particular Days, my win percentage is more and on few, my percentage is way less, So It is fair to say it all depends upon the state of mind.

Let’s check how my rating throughout the journey —

import plotly.express as px

def rating(record):
if record["Black"] == "chandurohitheee":
return record["BlackElo"]
else:
return record["WhiteElo"]

data["Rating"] = data.apply(lambda row : rating(row), axis=1)

fig = px.line(x=data.groupby("Date")["Rating"].mean().keys(), y=data.groupby("Date")["Rating"].mean().values, markers=True)
fig.show()
Rating vs Dates

As we can see, My Rating went on Fluctuating and it is evident that the Game is completely dependent on the state of mind. Also, chess.com is such a beautiful site, where if your rating is increasing, you will face tougher opponents and vice versa. Let’s prove this now by considering opponent ratings vs. Game Results —

import plotly.express as px

def OpponentRating(record):
if record["Black"] == "chandurohitheee":
return record["WhiteElo"]
else:
return record["BlackElo"]

data["OpponentRating"] = data.apply(lambda row : OpponentRating(row), axis=1)

fig = px.histogram(data, x="GameResult", y="OpponentRating", barmode='group', histfunc='avg', text_auto = "%.2s")
fig.show()
Opponent Rating vs Result

As we can notice, I have lost more when facing an avg of players with 1230 ratings and won more when dealing with players with less than 1200 ratings. So Opponent’s expertise matters.

Based on the Time Taken

Recently I played chess in the office, and I won two out of two, by taking the game to the last. So it gives me the interest to analyze the game based on the time taken and derive some outcomes —

import plotly.express as px

def TimeTaken(record):
if record["Black"] == "chandurohitheee":
return timedelta(hours = int(record["black_time_taken"].split(":")[0]),minutes = int(record["black_time_taken"].split(":")[1]),seconds = int(record["black_time_taken"].split(":")[2]))
else:
hour = int(record["white_time_taken"].split(":")[0])
minute = int(record["white_time_taken"].split(":")[1])
if len(record["white_time_taken"].split(":")) == 2:
second = 0
else:
second = int(record["white_time_taken"].split(":")[2])
return timedelta(hours = hour,minutes = minute,seconds = second)

data["TimeTaken"] = data.apply(lambda row : TimeTaken(row), axis=1)

fig = px.histogram(data, x="TimeTaken", y="GameResult", color="GameResult", barmode='group', histfunc='count', text_auto = "%d")

fig.show()
TimeTaken vs Result

Sorry for the timestamps, it is in Iso Format, But an interesting fact is that when I took the game to the end or was aggressive in the starting has proved helpful to me, but the middle stage of the game is where I need to be more cautious.

Let’s Dig into some Game Outcomes —

import plotly.express as px

def return_conclusion_type(Termination):
if "resignation" in Termination:
return "Resignation"
elif "checkmate" in Termination:
return "CheckMate"
elif "time" in Termination:
return "Timeout"
elif "abandoned" in Termination:
return "Game Abandoned"
else:
return Termination

data["Termination_type"] = data["Termination"].apply(return_conclusion_type)

fig = px.histogram(data, x="GameResult", y="Termination_type", color="Termination_type", barmode='group', histfunc='count', text_auto = "%d")

fig.show()
Termination vs GameResult

So, I can derive a few things, I am managing the time very well as there are only two losses due to Timeout and I don’t abandon the game often But In my wins, as you can see, The element of surprise in checkmates is very low, and often opponent figured out that he is going to lose, This is something I need to work on. Suprise and takeout the opponent more.

Let’s Now check whether the Move count plays a role in my Outcomes —

import plotly.express as px

fig = px.bar(x=data.groupby("Termination_type")["number_of_moves"].mean().keys(), y=data.groupby("Termination_type")["number_of_moves"].mean().values, text_auto = True)

fig.show()
MoveCount vs Termination

We can see the obvious results in the above graph, and not much to infer.

So That’s all the analysis I did so far on my chess games, there is a lot to infer, such as tracking the queen’s steps, weighing the importance of specific pieces, and so on, But that’s for another article.

In this article, I took some important points — Being white has its own advantage. It’s better to take the game deep or be aggressive at the beginning itself, and I have to explore more on the openings.

Happy Coding …


Exploratory Data Analysis of My Chess Dataset Using Python Plotly was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->