Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Deep Learning from Scratch in Modern C++
Latest   Machine Learning

Deep Learning from Scratch in Modern C++

Last Updated on July 25, 2023 by Editorial Team

Author(s): Luiz doleron

Originally published on Towards AI.

Let’s have fun by implementing Deep Learning models in C++.

It is needless to say how relevant machine learning frameworks are for research and industry. Due to their extensibility and flexibility, it is rare to find a project nowadays not using Google TensorFlow or Meta PyTorch.

That said, it may seem counter-intuitive to spend time coding machine learning algorithms from scratch, i.e., without any base framework. However, it is not. Coding the algorithms ourselves provides a clear and solid understanding of how the algorithms work and what the models are really doing.

In this series, we will learn how to code the must-to-know deep learning algorithms such as convolutions, backpropagation, activation functions, optimizers, deep neural networks, and so on, using only plain and modern C++.

We will begin our journey in this story by learning some of the modern C++ language features and relevant programming details to code deep learning and machine learning models.

Check other stories:

1 — Coding 2D convolutions in C++

2 — Cost Functions using Lambdas

3 — Implementing Gradient Descent

4 — Activation Functions

… more to come.

What I cannot create, I do not understand. — Richard Feynman

Modern C++, <algorithm>, and <numeric> headers

Once an old language, C++ has drastically evolved in the last decade. One of the main changes is the support of Functional Programming. However, several other improvements were introduced, helping us to develop better, faster, and safer machine learning code.

For the sake of our mission here, C++ included a handy set of common routines in the <numeric> and <algorithm> headers. As an illustrative example, we can obtain the inner product of two vectors by:

#include <numeric>
#include <iostream>

int main()
{
std::vector<double> X {1., 2., 3., 4., 5., 6.};
std::vector<double> Y {1., 1., 0., 1., 0., 1.};

auto result = std::inner_product(X.begin(), X.end(), Y.begin(), 0.0);
std::cout << "Inner product of X and Y is " << result << '\n';
return 0;
}

and use functions like accumulate and reduce as follows:

std::vector<double> V {1., 2., 3., 4., 5.};

double sum = std::accumulate(V.begin(), V.end(), 0.0);

std::cout << "Summation of V is " << sum << '\n';

double product = std::accumulate(V.begin(), V.end(), 1.0, std::multiplies<double>());

std::cout << "Productory of V is " << product << '\n';

double reduction = std::reduce(V.begin(), V.end(), 1.0, std::multiplies<double>());

std::cout << "Reduction of V is " << reduction << '\n';

The algorithm header is plenty of useful routines, such as std::transform,std::for_each, std::count, std::unique, std::sort, and so on. Let’s see an illustrative example:

#include <algorithm>
#include <iostream>

double square(double x) {return x * x;}

int main()
{
std::vector<double> X {1., 2., 3., 4., 5., 6.};
std::vector<double> Y(X.size(), 0);

std::transform(X.begin(), X.end(), Y.begin(), square);
std::for_each(Y.begin(), Y.end(), [](double y){std::cout << y << " ";});
std::cout << "\n";

return 0;
}

It turns out that, in modern C++, instead of explicitly using for or while loops, we can rather use functions such as std::transform, std::for_each, std::generate_n, etc., passing functors, lambdas, or even vanilla functions as parameters.

The examples above can be found in this repository on GitHub.

By the way,[](double v){...} is a lambda. Let’s talk about functional programming and lambdas now.

Functional programming

C++ is a multi-paradigm programming language, meaning that we can use it to create programs using different “styles” such as OOP, procedural, and recently, functional.

The C++ support for functional programming begins in the <functional> header:

#include <algorithm> // std::for_each 
#include <functional> // std::less, std::less_equal, std::greater, std::greater_equal
#include <iostream> // std::cout

int main()
{

std::vector<std::function<bool(double, double)>> comparators
{
std::less<double>(),
std::less_equal<double>(),
std::greater<double>(),
std::greater_equal<double>()
};

double x = 10.;
double y = 10.;
auto compare = [&x, &y](const std::function<bool(double, double)> &comparator)
{
bool b = comparator(x, y);
std::cout << (b?"TRUE": "FALSE") << "\n";
};

std::for_each(comparators.begin(), comparators.end(), compare);

return 0;
}

Here, we use std::function, std::less, std::less_equal, std::greater, andstd::greater_equal as an example of polymorphic calls in action without using pointers.

As we already discussed, C++ 11 includes changes in the core of the language to support functional programming. So far, we have seen one of them:

auto compare = [&x, &y](const std::function<bool(double, double)> &comparator)
{
bool b = comparator(x, y);
std::cout << (b?"TRUE": "FALSE") << "\n";
};

This code defines a lambda and a lambda defines a function object, that is, an invocable object.

Note that compare is not the lambda name but the name of a variable to which the lambda is assigned. Indeed, lambdas are anonymous objects.

This lambda consists of 3 clauses: a capture list ([&x, &y] ), a parameter list (const std::function<boll(double, double)> &comparator), and the body (the code between the curly braces{...}).

The parameter list and body clauses work like in any regular function. The capture clause specifies the set of external variables addressable in the lambda’s body.

Lambdas are highly useful. We can declare and pass them like old-style functors. For example, we can define an L2 regularization lambda:

auto L2 = [](const std::vector<double> &V)
{
double p = 0.01;
return std::inner_product(V.begin(), V.end(), V.begin(), 0.0) * p;
};

and pass it back to our layer as a parameter:

auto layer = new Layer::Dense();
layer.set_regularization(L2)

By default, lambdas do not cause side effects, i.e., they cannot change the state of objects in the outer memory space. However, we can define a mutable lambda if we want. Consider the following implementation of Momentum:

#include <algorithm>
#include <iostream>

using vector = std::vector<double>;

int main()
{

auto momentum_optimizer = [V = vector()](const vector &gradient) mutable
{
if (V.empty()) V.resize(gradient.size(), 0.);
std::transform(V.begin(), V.end(), gradient.begin(), V.begin(), [](double v, double dx)
{
double beta = 0.7;
return v = beta * v + dx;
});
return V;
};

auto print = [](double d) { std::cout << d << " "; };

const vector current_grads {1., 0., 1., 1., 0., 1.};
for (int i = 0; i < 3; ++i)
{
vector weight_update = momentum_optimizer(current_grads);
std::for_each(weight_update.begin(), weight_update.end(), print);
std::cout << "\n";
}

return 0;
}

Each momentum_optimizer(current_grads) call results in a different value even though we are passing the same value as the parameter. This happens because we defined the lambda using the keyword mutable.

For our purpose now, the functional programming paradigm is particularly valuable. By using functional features, we will write less but more robust code, performing more complex tasks way faster.

Matrix & Linear Algebra Library

Well, when I said “pure C++”, it was not entirely true. We will be using a reliable linear algebra library to implement our algorithms.

Matrices and tensors are the building blocks of machine learning algorithms. There is no built-in matrix implementation in C++ (and there shouldn’t be one). Fortunately, there are several mature and excellent linear algebra libraries available, such as Eigen and Armadillo.

I have been using Eigen happily for years. Eigen (under the Mozilla Public License 2.0) is header-only and does not depend on any third-party libraries. Therefore, I will use Eigen as the linear algebra backend for this story and beyond.

Common Matrix Operations

The most important matrix operation is matrix-by-matrix multiplication:

#include <iostream>
#include <Eigen/Dense>

int main(int, char **)
{
Eigen::MatrixXd A(2, 2);
A(0, 0) = 2.;
A(1, 0) = -2.;
A(0, 1) = 3.;
A(1, 1) = 1.;

Eigen::MatrixXd B(2, 3);
B(0, 0) = 1.;
B(1, 0) = 1.;
B(0, 1) = 2.;
B(1, 1) = 2.;
B(0, 2) = -1.;
B(1, 2) = 1.;

auto C = A * B;

std::cout << "A:\n" << A << std::endl;
std::cout << "B:\n" << B << std::endl;
std::cout << "C:\n" << C << std::endl;

return 0;
}

Usually referred to as mulmat, this operation has a computational complexity of O(N³). Since mulmat is used extensively in machine learning, our algorithms are strongly affected by the size of our matrices.

Let’s talk about another type of matrix-by-matrix multiplication. Sometimes, we need only a coefficient-wise matrix multiplication:

auto D = B.cwiseProduct(C);
std::cout << "coefficient-wise multiplication is:\n" << D << std::endl;

Of course, in coefficient-wise multiplication, the dimension of arguments must match. In the same way, we can add or subtract matrices:

auto E = B + C;
std::cout << "The sum of B & C is:\n" << E << std::endl;

Finally, let’s discuss three very important matrix operations: transpose, inverse , and determinant :

std::cout << "The transpose of B is:\n" << B.transpose() << std::endl;
std::cout << "The A inverse is:\n" << A.inverse() << std::endl;
std::cout << "The determinant of A is:\n" << A.determinant() << std::endl;

Inverses, transposes, and determinants are fundamental to implementing our models. Another key point is to apply a function to each element of a matrix:

auto my_func = [](double x){return x * x;};
std::cout << A.unaryExpr(my_func) << std::endl;

The examples above can be found here.

One word about vectorization

Modern compilers and computer architectures provide an enhanced feature called vectorization. In simple words, vectorization allows independent arithmetic operations to be executed in parallel, using multiple registers. For example, the following for-loop:

for (int i = 0; i < 1024; i++) 
{
A[i] = A[i] + B[i];
}

is silently replaced by the vectorized version:

for(i=0; i < 512; i += 2) 
{
A[i] = A[i] + B[i];
A[i + 1] = A[i + 1] + B[i + 1];
}

by the compiler. The trick is that the instruction A[i + 1] = A[i + 1] + B[i + 1] runs at the same time as the instruction A[i] = A[i] + B[i]. This is possible because the two instructions are independent of each other, and the underlying hardware has duplicated resources, that is, two execution units.

If the hardware has four executions units, the compiler unrolls the loop in the following way:

for(i=0; i < 256; i += 4) 
{
A[i] = A[i] + B[i] ;
A[i + 1] = A[i + 1] + B[i + 1];
A[i + 2] = A[i + 2] + B[i + 2];
A[i + 3] = A[i + 3] + B[i + 3];
}

This vectorized version makes the program run 4 times faster when compared with the original version. It is noteworthy that this performance gain happens without impacting the original program’s behavior.

Even though vectorization is performed by the compiler, operation system, and hardware under the wood, we have to be attentive when coding to allow vectorization:

  • Enabling the vectorization flags required to compile the program
  • The loop boundary must be known before the loop starts, dynamically or statically
  • The loop body instructions shouldn’t reference a previous state. For example, things like A[i] = A[i — 1] + B[i] might prevent vectorization because, in some situations, the compiler cannot safely determine if A[i-1] is valid during the current instruction call.
  • The loop body should consist of simple and straight-line code. inline function calls and previously vectorized functions are also allowed. But complex logic, subroutines, nested loops, and function calls in general prevent vectorization from working.

In some circumstances, following these rules is not easy. Given the complexity and code size, sometimes it is hard to say when a specific part of the code was or wasn’t vectorized by the compiler.

As a rule of thumb, the more streamlined and straightforward the code, the more prone to be vectorized it is. Therefore, using standard features of <numeric> , algorithm , functional, and STL containers indicate code that is more likely to be vectorized.

Vectorization in Machine Learning

Vectorization performs an important role in machine learning. For example, batches are often processed in a vectorized way, making a train with large batches run faster than a train using small batches (or no batching).

Since our matrix algebra libraries make exhaustive use of vectorization, we usually aggregate the row data into batches to allow faster operation executions. Consider the following example:

Vectorizing example — by author

Instead of performing 6 inner products between each of the sixXivectors and one Vvector to obtain 6 outputs Y0, Y1, etc, we can stack the input vectors to mount a matrix M with six rows and run it once using a single mulmat multiplication Y = M*V .

The output Y is a vector. We can finally unstack its elements to obtain the desired 6 output values.

Conclusion and Next Steps

This was an introductory talk about how to code deep learning algorithms using modern C++. We covered very important aspects in the development of high-performance machine learning programs such as functional programming, algebra calculus, and vectorization.

Some relevant programming topics of real-world ML projects were not covered here, like GPU programming or distributed training. We shall talk about these subjects in a future story.

In the next story, we shall learn how to code 2D Convolution, the most fundamental operation in deep learning.

Acknowledgment

I would like to thank Andrew Johnson (andrew@, subarctic.org, https://github.com/andrew-johnson-4) for reviewing this text.

References

C++ reference

Eigen Linear Algebra Library

Lambda Expressions in C++

Intel Vectorization Essentials

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->