Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Dynamic Time Warping on Time Series Analysis
Latest

Dynamic Time Warping on Time Series Analysis

Last Updated on December 1, 2022 by Editorial Team

Author(s): Sumeet Lalla

Originally published on Towards AI the World’s Leading AI and Technology News and Media Company. If you are building an AI-related product or service, we invite you to consider becoming an AI sponsor. At Towards AI, we help scale AI and technology startups. Let us help you unleash your technology to the masses.

NDVI Time Series

Introduction

Agriculture plays a very important role in a developing country like India. It contributed about 20 percent to the GDP, and 58 percent of the Indian population is linked to Agriculture. Wheat is one of the staple foods in India. Machine Learning plays a big role in Agriculture in the various stages of harvesting to improve crop yield, forecasting of weather, identification of diseases and pests, etc.

The seasonal growth of wheat is studied for the months from October 2020 to May 2020 for the three districts in India, i.e., Karnal, Kaithal, and Dewas. The metric used to study the same is Vegetation Index which is normalized (termed NDVI) and precomputed from Sentinel-2 satellite data. The training data comprises the geographical information of the district, i.e., latitude and longitude, along with the information if wheat can be produced on it or not. It also contains the NDVI data from the date of germination till harvest for each sector in the district, which is the primary key for the former and acts as a foreign key for the latter.

The given problem involves the NDVI time series for the seasonal growth of wheat in three districts of India. The data for each district constitutes the NDVI time series which can have different starting and ending dates, i.e., the start of germination and end of harvest. Hence the length of the time series is sometimes varying. We came up with an approach to compare two-time series using Dynamic Time Warping.

The NDVI time series for the districts is analyzed for similarity using Dynamic Time Warping (DTW). The DTW is used as feature embeddings and as a metric for 1NN classification. The two approaches are applied to the test data, and evaluation metrics are compared. For the feature embeddings, two classifiers, i.e., Support Vector Machine and tree-based ensemble methods, are used. In the case of the tree-based ensemble method, Random Forest Classifier was used. The evaluation results of the two classifiers are checked for the individual as well as combined districts, and the scenarios are analyzed and discussed for cases where one classifier outperforms the other.

Motivation Of Work

The similarity between the time series using Dynamic Time Warping as feature embeddings as well as metric for 1NN classification have been analyzed before on UCR datasets as well as on temporal sequences in audio and speech synthesis and signal analysis domain and is used extensively for time series classification.

We have analyzed Dynamic Time Warping as feature embeddings for out-of-phase time series data which is collected from Landsat and Sentinel 2 satellites. These have been analyzed by using Dynamic Time Warping as a metric for 1NN classification and as feature embeddings, and a comparison of the effectiveness between the two has been made.

Structure Of Work

DTW follows the edit distance algorithm where the time series are treated as subsequences and warping is calculated among all possible points of the time series. It basically signifies the alignment distance between the time series, and its value denotes the alignments needed to convert the compared time series to the reference one. The detailed algorithm for Dynamic computing Time Warping, along with its properties, is detailed in the next sections.

The Dynamic Time Warping distance finds its usage in audio signal analysis, satellite image analysis, etc. It, however, cannot be a norm as the properties of the norm are violated, which will be discussed in the next sections.

Related Work

Some of the noticeable work in this field which was referred to as part of this project, are as under:

Dynamic time warping with out-of-phase time series is analyzed in the paper (Maus et al., 2016), where time series of varying lengths are handled by introducing the Time-Weighted Dynamic Time Warping Method. Here Dynamic Time Warping is used as a metric.

Dynamic Time Warping as feature embeddings is analyzed in the paper (Kate, 2015). Here the author proposes to use Dynamic Time Warping as a feature.

The paper (Young-Seon, Jeong, & Omitaomu, 2011) discusses the out-of-phase time series and the different penalizing functions that can be applied to the same for constraining the Dynamic Time Warping between them.

Dynamic Time Warping:

Given two-time series X=x1, x2, x3…, xn and Y=y1, y2, y3…, ym, the simplest distance metric which can be computed between the two is Euclidean Distance provided m=n.

The Euclidean distance metric is quite simple to use and effective hence it is widely used in data mining tasks. However, the simplicity comes with a disadvantage in Time Series tasks as the Euclidean distance metric penalizes more for a small variation in distance between the Time Series due to the square term. The small variation can be due to the Time Series starting slightly earlier/later or completing earlier/later. The other disadvantage is that the Time Series needs to have an equal length to compute it. Both the above-discussed disadvantages in Time Series can be overcome by using Dynamic Time Warping.

Dynamic Time Warping tries to find the best alignment between the time series, X=x1, x2, x3…, xn and Y=y1, y2, y3…, ym. To align the time series, the concept of edit distance algorithm using dynamic programming is used. The alignment which is the best will minimize the overall cost between the points on the time series. The cost, in this case, is the norm, either 1-norm, also called Manhattan distance, or 2-norm, also called Euclidean Distance. Generally, it is denoted by p norm.

The algorithm is described below.

DTW Algorithm

The overall computational complexity of computing Dynamic Time Warping is O(mn), where m and n are the lengths of the time series. From the above, it can be concluded that it is a computationally expensive process. Various speedups have been introduced, like introducing a lower bound to the distance or introducing a window of size r, which restricts the warping path to be closer to the diagonal of the cost matrix. This helps to improve the computational speed of calculating Dynamic Time Warping as well as improving the accuracy of time series classification.
In our case, the constraint we would be using is time-weighted, which is a penalty cost function depending on the date of the time series, and penalizing the Dynamic Time Warping on the same, which will be discussed in the next sections.

Properties of Dynamic Time Warping

a) The Dynamic Time Warping is symmetric if the step pattern chosen is symmetric while computing the alignment from test to reference point else, it is asymmetric.

b) The Dynamic Time Warping between two similar sequences is 0.

c) The Dynamic Time Warping does not follow triangular inequality.

The third property c) above tells us that Dynamic Time Warping violates the norm properties and hence cannot be treated as a norm and hence as a Metric. Thus, it can be treated as a Measure. The first two properties of Dynamic Time Warping will be used when computing the Dynamic Time Warping matrix between the reference and test point discussed in the next sections.

Optimal Path for Dynamic Time Warping (DTW)

In the above-discussed DTW algorithm, to trace back the optimal path, a traceback matrix is maintained, which stores the decision, i.e., matching, insertion, and deletion made when computing the Dynamic Time Warping during intermediate steps of Dynamic programming. A path list is used, which is initialized with the end indices of the time series, X and Y. The path list is then appended with the other indices of the time series, X and Y, based on the traceback matrix. The indices are incremented/decremented based on the value of the traceback matrix at the given indices iteratively. The length of the optimal path is simply the count of the number of elements in the path list.

The algorithm is described below.

DTW Optimal Path Algorithm

Time Series Plot (from Example dataset)

Time Series Plot

Naïve DTW Cost Matrix and Time Series Alignment (from Example dataset)

Naïve DTW Cost Matrix

From the above plot of the cost matrix, we can observe that there are incorrect alignments leading to the optimal path being away from the diagonal. We will observe in the next chapter how the Time Weighted Dynamic Time Warping reduces the incorrect alignments by penalizing the incorrect warpings leading to the optimal path being closer to the diagonal.

Naïve DTW Optimal path alignment

From the above plot, we observe that the Naïve DTW produces incorrect alignments, which would be corrected when we use the Time Weighted Dynamic Time Warping described in the next chapter.

Time Weighted Dynamic Time Warping:

The previous chapter discussed the original implementation of Dynamic Time Warping. From it, we can conclude that it applies equal weight while computing the distance between the test and reference point. However, there can be a scenario where there are phase differences between the test and reference point. The original implementation does not handle it. In the paper (Young-Seon, Jeong, & Omitaomu, 2011), the weight cost function is proposed to overcome the problem of phase differences between the test and reference point. The points in the sequence are prevented from matching further to the other sequence by using a penalty which in turn reduces the rate of misclassification. Our problem is related to the NDVI time series, and NDVI is calculated using the pixel of the image for the date. Hence, this problem falls under the space-time classification category. As proposed in the paper (Maus et al., 2016), we would be proceeding with the modified weighted logistic cost function, which has midpoint β and steepness α.

Logistic Weight Penalty Function

Let us walk through the above equation of computing the penalty for the time series X and Y described above. The wij denotes the penalty and the α and β are hyperparameters that represent the steepness and the midpoint of the logistic function and can be obtained by running different experiments on the train and test data. The g(xi, yj) is a function denoting the day’s difference between the dates of xi and yj of two-time series X and Y described above. The below plot shows the value of penalty wij for different values of hyperparameters, i.e., α and β.

Plotting Logistic Weight Penalty Function for different values of hyperparameters midpoint β and steepness α.

The penalty function value computed from above is added to the Dynamic Time Warping distance computation algorithm described below.

Time Weighted DTW Cost Matrix and Time Series Alignment (from Example dataset) with α=0.001 and β=20

Time Weighted DTW Cost Matrix

From the above plot, we observe that the Time Weighted Dynamic Time Warping reduces the incorrect alignments by penalizing the incorrect warpings leading to the optimal path being closer to the diagonal.

Time Weighted DTW Optimal Path Alignment

From the above plot, we observe that the Time Weighted Dynamic Time Warping reduces the incorrect alignments by penalizing the incorrect warpings when compared with Naïve DTW.

Conclusion

The Classifier Model developed as part of this project is able to predict the growth of wheat in different districts individually as well as combined. Further, the study yielded the following important observations:

a) The Time Weighted DTW individual model on each of the districts performs better than the merged model.

b) Using Time Weighted DTW as feature embeddings for classification gives better evaluation results on test data than when using it as a metric for 1NN classification.

c) When using Time Weighted DTW as feature embeddings, use SVC as the classifier since it handles the problem of the number of predictors, i.e., the number of features >> number of observations in the dataset.

References

1. Kate, J. R. (2015). Using Dynamic Time Warping Distances as Features. Springer, 28.

2. Maus, V., Camara, G., Cartaxo, R., Sanchez, A., Ramos, M. F., & Ribeiro, Q. G. (2016). A Time-Weighted Dynamic Time Warping method for land use and land cover mapping. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 10.

3. Young-Seon, J., Jeong, K. M., & Omitaomu, A. O. (2011). Weighted dynamic time warping for time series classification. Elsevier, 10.


Dynamic Time Warping on Time Series Analysis was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->