Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Retrieval-Augmented Generation (RAG): LLMs with Real-Time Knowledge
Computer Science   Latest   Machine Learning

Retrieval-Augmented Generation (RAG): LLMs with Real-Time Knowledge

Last Updated on September 27, 2024 by Editorial Team

Author(s): Shivam Mohan

Originally published on Towards AI.

This member-only story is on us. Upgrade to access all of Medium.

Artificial Intelligence (AI) constantly evolves, and Retrieval-Augmented Generation (RAG) is at the forefront of this revolution. By merging the text generation capabilities of language models with real-time information retrieval, RAG is reshaping how AI, especially Generative AI systems process, retrieve, and generate responses. This article explores the technical workings of RAG, including how data is ingested into a vector database, how relevant information is retrieved, and how AI generates responses based on both pre-trained knowledge and retrieved data.

Retrieval-Augmented Generation (RAG) is a hybrid AI model that combines the generative capabilities of models like GPT with a retrieval system that fetches real-time, up-to-date information from external sources (e.g., databases or the internet). Unlike static language models, which can only generate responses based on the data they were trained on, RAG systems can retrieve the latest information to ensure their responses are accurate, current, and relevant.

RAG’s development was pioneered by researchers from Facebook AI Research (FAIR), including Patrick Lewis and Ethan Perez. Their work addresses a key limitation in traditional language models: the inability to access information beyond their training data. By integrating transformer-based models with retrieval systems, the FAIR team… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓