Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Unlock the full potential of AI with Building LLMs for Productionβ€”our 470+ page guide to mastering LLMs with practical projects and expert insights!

Publication

How To Use Vector Search To Quickly Build A Content-Based Filtering Recommender System
Latest   Machine Learning

How To Use Vector Search To Quickly Build A Content-Based Filtering Recommender System

Last Updated on July 17, 2023 by Editorial Team

Author(s): ___

Originally published on Towards AI.

Qualitative Evaluation


Visualizing some results (all movie posters are from imdb)

In this article, I will share how a vector search engine like weaviate can be used to quickly build a content-based filtering recommender system.

The code to reproduce the solution described in this article is in this repo.

We will demonstrate how the solution works using the MovieLens 1M Dataset.

A movie has the following properties:

TitlePlotSummaryGenres (list of strings)

The solution is really simple.

Given a movie and its properties, we simply turn it into a single vector using the sentence-transformers/msmarco-distilroberta-base-v2 model and store the results in the database.

To generate a recommendation, we take:

the last n movies… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓