Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Building Graph RAG for structured and unstructured data.
Data Science   Latest   Machine Learning

Building Graph RAG for structured and unstructured data.

Last Updated on January 14, 2025 by Editorial Team

Author(s): Sreeram A S K

Originally published on Towards AI.

RAG architecture is, by far, the most adapted and sophisticated solution for missing contextualisation of LLM’s. With no overhead of fine tuning, to a huge extent problems concerning the usage of LLM’s with untrained knowledge base’s have been solved with RAG.

While the Vector RAG could establish the contextualisation, the extent to which it could do that, has been limited. With complicated relationships and highly interconnected data, the recall measure of Vector RAG is not impressive. One of the major reasons being, the naïve vector embeddings that make up the Knowledge Base, which only consider geometrical proximity.

Graphs, on the other hand are innately structured to capture intricate relationships within data, leading to longer contextuality. For this reason graph based RAG’s have become the best means to exploit LLM capabilities.

Building Knowledge Graphs

Knowledge graphs can be populated with both unstructured data like Text, PDF’s and structured data like Tables/CSV’s. To manually identify and extract Nodes, Relationships and Node properties from documents spanning multiple pages, is a in-human task and requires high amount of domain expertise. Langchain has turned this daunting task into an effortless one, by using LLM’s for graph entity extraction.

Lets take a look at how to convert Unstructured and Structured data into Knowledge Graphs.

Unstructured data

Before proceeding further lets make all the necessary imports

from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_openai import AzureChatOpenAI
import os
from langchain_core.documents import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain_community.vectorstores.neo4j_vector import Neo4jVector
from langchain_openai import AzureOpenAIEmbeddings
import fitz
import logging
import ast
from tqdm.notebook import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
from langchain.memory import ConversationBufferMemory

We will be using Neo4j Desktop application as Graph Database and AzureOpenAI LLM across this article.

#Azure opena ai Gpt model initialisation
gpt_llm = AzureChatOpenAI(temperature=0, azure_deployment= OPENAI_GPT_DEPLOYMENT_NAME, api_key= OPENAI_API_KEY, api_version= OPENAI_API_VERSION, azure_endpoint= AZURE_ENDPOINT)
# Initialise neo4j object with an active neo4j server credentials
graph_db = Neo4jGraph()

First we need to extract all the text from PDF’s and instantiate a langchain Document object with that text.

def convert_pdf_to_text (file_paths):

"""
file_paths = list[str]
rtype: Document object
Implements text extraction from pdf and forms a langchain object with the document text.
"""


doc_text = []
#iterate through each document
for i in file_paths:
logging.info("Reading ..."+str(i))
doc = fitz.open(i)

# Iterate through each page in the document and extract text
try:
text = ""
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
# Combine metadata along with the document text
doc_text.append([Document(page_content=str(text))])

except Exception as e:
logging.info("Error Reading Document : "+str(e))

return(doc_text)

After the text extraction, we now chunk the documents. Each new chunk will be a Document object in itself.

def split_text(docs):

"""
docs: list of docuemnt objects
rtype: list[Document]
Implements chunking mechanism by splitting the given document into chunks along with the metadata
"""

#initialise text splitter with appropriate chunk size and chunk overlap
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1000, chunk_overlap=100 )
documents = []
#Iterate through all the documents and implement chunking
for i in docs:
documents.append(text_splitter.split_documents(i))
# merge all the chunked documents into a single list
merged_docs = [item for sublist in documents for item in sublist]

return(merged_docs)

The chunk and overlap size can be treated as hyper parameters.

We now have to populate a Graph from the chunked documents by extracting Nodes, Node properties and Relationships from the Document text. As the number of documents increase, it would become an impossible task to extract them manually. Hence we would use an LLM for extraction. The LLM would go through all the document chunks and populate those nodes which have interconnected relationships. The LLMGraphTransformer function from langchain does the job for us.

def construct_graph(doc):
"""
doc: Document object
rtype: Graph Document
Implements graph contruction functionality using llm.
"""

#initialise graph transformer object
llm_transformer = LLMGraphTransformer(llm= gpt_llm)

#construct graph by extracting nodes and relationships from documents using LLM
graph_doc = llm_transformer.convert_to_graph_documents([doc])
return(graph_doc)

Though this might have reduced a lot of manual labour, it still consumes a huge amount time for entity extraction. Hence we would multi thread the same process to handle multiple documents and collate the results. Below is a multi-threaded implementation of the above function.

def thread_construct_graph(merged_docs):

"""
merged_docs: list
Implements the graph construction from diocuments using LLM in a multithreaded approach and pushes the extracted nodes and relationships into the provided GraphDB
"""

MAX_WORKERS = 20 # can be changed as per requirement
# NUM_ARTICLES = len(merged_docs)
graph_documents = []

with ThreadPoolExecutor(max_workers=MAX_WORKERS) as pool:
# Submitting all tasks and creating a list of future objects
futures = [pool.submit(construct_graph, merged_docs[i]) for i in range(len(merged_docs)) ]

#tqdm displays a progress bar for threading execution visualisation
for future in tqdm(as_completed(futures), total=len(futures), desc="Processing documents"):

#capture results of thread status
graph_document = future.result()
graph_documents.extend(graph_document) #list extension method to add new graph documents to the existing list

# add the contructed graph into graph db with extracted nodes and relatiosnhips
graph_db.add_graph_documents(graph_documents,baseEntityLabel = True, include_source = True)
logging.info("Constructed graphdb...")
logging.info("Schema: "+str(graph_db.get_schema))

Once the graph has been populated the add_graph_documents method of the graph_db object would push the populated graph into neo4j DB.

Structured Data

Constructing Knowledge Graph from structured data like CSV’s is comparatively strenuous than unstructured, but can be programmatically populated. The neomodel library, which connects to neo4j from python, can be used to define the structure of the node and its properties.

Required imports:

from neomodel import db, config, StructuredNode, RelationshipTo, RelationshipFrom, StringProperty
config.DATABASE_URL = "bolt://neo4j:#PASSWORD@localhost:7687"

To define the structure of Node, we will have to define a node class, implementing the StructuredNode. The member variables of the class will become the node’s properties, and relationships.

The below code demonstrates , an employee node that has properties such as Emp_ID, Emp_Fname, Emp_Lname, Emp_Location, Emp_Manager_Name, Emp_Rank..etc which is related to Manager Node by ‘reports to’ relation and to the Department Node by ‘belongs to’ relationship.

class Employee (StructuredNode):

__label__ = "Employee"
Emp_ID= StringProperty(unique_index = True)
Emp_Fname= StringProperty()
Emp_Lname= StringProperty()
Emp_Location= StringProperty()
Emp_Manager_Name= StringProperty()
Emp_Rank= StringProperty()

reports_to= RelationshipTo(Manager, "reports to")
belongs_to= RelationshipTo(Department, "belongs to")


class Manager (StructuredNode):

__label__ = "Manager"
Emp_id= StringProperty(unique_index = True)
M_Fname= StringProperty()
M_Lname= StringProperty()
dept_id= StringProperty()
dept_name = StringProperty()

class Department (StructuredNode):

__label__ = "Department"
Dept_ID= StringProperty(unique_index = True)
Dept_name= StringProperty()
Emp_count = StringProperty()
Manager_emp_id = StringProperty()

After defining the Node properties and relationships its allowed to have, we can now instantiate the nodes and assign values to all the node properties. For example, if i have to define a new employee node and establish a relationship between their Manager and Department nodes, here is how we could do it.

emp_node = Employee.get_or_create({
Emp_ID= #employee_id
Emp_Fname= #employee_fname
Emp_Lname= #employee_lname
Emp_Location= #employee_location
Emp_Manager_Name= .#employee_manager_name
Emp_Rank= #employee_rank
})

Manager = Manager.get_or_create({
Emp_id= #manager_emp_id
M_Fname= #manager_fname
M_Lname= #manager_lname
dept_id= #dept_id
dept_name = #dept_name
})

dept = Department.get_or_create({
Dept_ID= #dept_id
Dept_name= #dept_name
Emp_count = #emp_count
Manager_emp_id =#manager_emp_id
})


emp_node.reports_to.connect(Manager)
emp_node.belongs_to.connect(dept)

The get_or_create function either fetches an existing node if already present or creates a new node. If the manager or department nodes for an employee node already exist, then it assigns the employee node to them with the respective relationships.

LLM Response

Once the knowledge graph is developed, we would now be completing the Graph RAG cycle by developing the last module, that connects Graph DB with an LLM and answers user queries.

Langchain has several libraries which in connection with neo4j provides an interface to help build an QA chain. Lets explore one of those functions below which queries the Graph db with the user query

def query_db_with_llm(existing_graph_index, metadata, query):

"""
existing_graph_index = Neo4j Object
metadata= dict
query= str
Implements querying the Graph DB using an LLM, alongside implicit metadata filtering
"""



logging.info("Metadata = ", metadata)
logging.info("Query = ", query)

#Initialise Neo4j object from the existing kowledge graph
existing_graph_index = Neo4jVector.from_existing_graph(
az_embeddings, # use the same embedding model as used for the embedding creations
)
# Intialise langchain querying object
qa_chain = ConversationalRetrievalChain.from_llm(return_source_documents= True, # True when the source of answers is required else False
llm= #LLM of your choice,
retriever = existing_graph_index.as_retriever(search_kwargs={'filter': metadata}), #does a vector embedding semantic search along with metadata filtering on node properties using neo4j vector indexing
verbose = True,
)
#query the Graph db
answer = qa_chain({"question": query, "chat_history": []})

return(answer)

The above code also demonstrates an additional metadata filtering functionality which filters nodes & relationships based on their properties, by passing it as a argument to index.as_retriever function.

Embedding

As many of you have noticed, we have not explicitly created embeddings for the unstructured text data before inserting it into Graph db. The LLMGraphTransformer would by default create a node label by name Document wherein the nodes under it would contain chunks and their embeddings as node properties. The embeddings are generated when the Neo4jVector.from_existing_graph method is called, if not already exists.

*In my next article i shall discuss and propose an enhanced Graph RAG querying method. Stay tuned!!!

Hope you find this informative.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->