Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

A Beginner’s Guide to CUDA Programming
Latest   Machine Learning

A Beginner’s Guide to CUDA Programming

Last Updated on January 14, 2025 by Editorial Team

Author(s): Aditya Kumar Manethia

Originally published on Towards AI.

Photo by Catherine Heath on Unsplash

Introduction

In this blog, we’ll explore the basics of CUDA programming, understand how GPUs differ from CPUs, and learn how CUDA enables us to unlock the full potential of GPUs for AI and other computationally intensive applications. Whether you’re a beginner or just curious about how GPUs power modern AI, this guide will help you take your first steps into the world of CUDA programming.

What is CUDA?

Compute Unified Device Architecture (CUDA) is a software platform and programming model created by NVIDIA. It allows users to use GPUs for tasks beyond rendering graphics, such as scientific simulations, machine learning, and high-performance computing. It allows to write programs that run on GPUs using language like C/C++.

Importance of CUDA

GPUs are designed to do intensive work and can handle thousands of tasks simultaneously, which make them perfect for parallel computing. CUDA provides the tools and libraries to write programs that can:

  • Accelerate computations by running them on GPU.
  • Handle large datasets.
  • Optimize performance for tasks like image processing, and deep learning.

What is a GPU, and How is it different from a CPU?

CPU (Central Processing Unit) is “brain” of your computer. It is optimized for sequential tasks (one thing at a time). CPU has few powerful cores (e.g., 4–16 cores in mostly, which is good for general-purpose tasks like running your operating system or web browser.

GPU was originally designed for rendering graphics. Now, GPUs are optimized for parallel tasks (many tasks at once). GPU has thousands of smaller, less powerful cores (e.g., NVIDIA H100 consists of 16,896 CUDA cores) which are ideal for tasks like matrix multiplication, which is the backbone of AI.

Understanding the GPU Architecture

simple diagram to see difference

GPU is a highly parallel processor. Let’s see it’s components:

  1. CUDA cores

CUDA cores are basic computational units of a GPU. Each CUDA core is a simple processor capable of performing basic arithmetic operations like addition, subtraction, and multiplication.

Think of CUDA cores as the “workers” in a factory. Each worker handles small part of the overall tasks, allowing the GPU to process large amount of data in parallel.

2. Streaming Multiprocessors (SMs)

CUDA cores are grouped into SMs. Each SM contains:

  • CUDA cores: Individual processing units.
  • Special Function Units (SFUs): For complex mathematical operations like trigonometric functions.
  • Registers: Fast, private memory for each thread.
  • Shared Memory: Memory shared by all the thread in the same block.
  • Warp Schedular: Manages the execution of threads in group called warps.

For example, NVIDIA RTX 4090 has 128 SMs, and each SM contain 128 CUDA cores.

3. Threads and Warps

A thread is the smallest unit of execution in CUDA. Each thread perform a specific task, such as processing one element of an array. Threads are grouped in warps, which are sets of 32 threads that execute the instruction simultaneously.

4. Memory Hierarchy

CUDA Programming Model

GPU has a complex memory hierarchy designed to balance speed and capacity. Let’s see main types of memory:

a. Global Memory: Accessible by all threads but relatively slow, used to store large datasets. Data must be copied from CPU to the GPU’s global memory before processing.

b. Shared Memory: Shared by all threads in same block and much faster than global memory. Ideal for sharing intermediate results between threads.

c. Registers: These are private to each thread and are fastest type of memory on GPU. These are used to store variables that are frequently accessed.

d. Constant Memory: Read-only memory shared by all threads, used for storing constants that don’t change during execution.

5. Tensor Cores

Tensor Cores are specialized hardware units in NVIDIA GPUs designed to accelerate matrix operations, which are critical for AI and machine learning. For example, Tensor Cores are used in deep learning frameworks like TensorFlow and PyTorch to speed up training and inference.

6. Streaming Processors

GPUs are designed to handle multiple tasks simultaneously using streams. A stream is a sequence of operations that execute in order and by multiple streams, you can overlap computation and memory transfers to improve performance.

How CUDA Works

CUDA allows us to write programs that run on GPU and are written in C/C++ with additional CUDA-specific syntax. The CPU (host) sends data and instructions to GPU (device), and the GPU performs the calculation in parallel. Let’s see basic steps of this program, here we will see addition of two vectors —

Step 1: Define the Kernel Function

Kernel is a function that runs on the GPU. It is defined using the __global__ keyword. The addKernel function runs on the GPU. It contains code that will be executed in parallel by multiple threads on the GPU. Each thread calculates its global index idx to determine which part of the data it will process.

Example-

__global__ void addKernel(float *a, float *b, float *c, int n) {
int idx = threadIdx.x + blockIdx.x * blockDim.x; // Calculate global thread index
if (idx < n) {
c[idx] = a[idx] + b[idx]; // Perform addition
}
}

Step 2: Allocating Memory

Before the GPU can process data, memory must be allocated on the GPU (device). This is done using the cudaMalloc function. Example-

float *d_a, *d_b, *d_c; // Device pointers
int size = n * sizeof(float); // Size of memory to allocate

cudaMalloc((void**)&d_a, size); // Allocate memory for array a on the GPU
cudaMalloc((void**)&d_b, size); // Allocate memory for array b on the GPU
cudaMalloc((void**)&d_c, size); // Allocate memory for array c on the GPU

Step 3: Copy Data from Host to Device

Data must be transferred from the CPU (host) to GPU (device) before the kernel can process it. This is done using the cudaMemcpy function. Example-

cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice); // Copy array a from host to device
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice); // Copy array b from host to device

Step 4: Launch the Kernel

The kernel is launched by the host using special CUDA syntax: <<<numBlocks, threadsPerBlock>>> . This specifies how many threads and blocks will execute the kernel. Example-

int threadsPerBlock = 256; // Number of threads per block
int numBlocks = (n + threadsPerBlock - 1) / threadsPerBlock; // Number of blocks

addKernel<<<numBlocks, threadsPerBlock>>>(d_a, d_b, d_c, n);
  • numBlocks : The number of blocks in the grid.
  • threadsPerBlock : The number of threads in each block.

Each thread in the grid processes a specific part of the data.

To understand more, assume GPU as a factory. Threads are individual workers in the factory. Blocks are groups of workers that work together on a specific task. And Grid is made up of multiple blocks.

Step 5: Copy Results from Device to Host

After execution, the results are copied back from GPU (device) to CPU (host) using cudaMemcpy . Example-

cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost); // Copy result array c from device to host

Step 6: Free GPU Memory

Once computation is complete, the memory allocated on the GPU must be freed using cudaFree . Example-

cudaFree(d_a); // Free memory for array a on the GPU
cudaFree(d_b); // Free memory for array b on the GPU
cudaFree(d_c); // Free memory for array c on the GPU

Now, let’s see complete CUDA program that adds two vectors:

#include <iostream>
#include <cuda_runtime.h>

// Kernel function to add two vectors
__global__ void addKernel(float *a, float *b, float *c, int n) {
int idx = threadIdx.x + blockIdx.x * blockDim.x; // Calculate global thread index
if (idx < n) {
c[idx] = a[idx] + b[idx]; // Perform addition
}
}

int main() {
const int n = 1 << 20; // 1 Million elements
const int size = n * sizeof(float); // Size of memory to allocate

// Host memory
float *h_a = new float[n];
float *h_b = new float[n];
float *h_c = new float[n];

// Initialize input vectors
for (int i = 0; i < n; ++i) {
h_a[i] = 1.0f;
h_b[i] = 2.0f;
}

// Device memory
float *d_a, *d_b, *d_c;
cudaMalloc((void**)&d_a, size); // Allocate memory on GPU for vector a
cudaMalloc((void**)&d_b, size); // Allocate memory on GPU for vector b
cudaMalloc((void**)&d_c, size); // Allocate memory on GPU for vector c

// Copy data from host to device
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);

// Launch kernel
int threadsPerBlock = 256;
int numBlocks = (n + threadsPerBlock - 1) / threadsPerBlock;
addKernel<<<numBlocks, threadsPerBlock>>>(d_a, d_b, d_c, n);

// Copy result back to host
cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

// Verify results
for (int i = 0; i < n; ++i) {
if (h_c[i] != 3.0f) {
std::cerr << "Error at index " << i << std::endl;
break;
}
}

// Free device memory
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

// Free host memory
delete[] h_a;
delete[] h_b;
delete[] h_c;

return 0;
}

This is very basic example, in future we will see more advance examples and optimize them too.

How GPUs Power the AI

GPUs are at the heart of modern AI because they can handle the massive computational demands of AI workloads. Here’s how:

  1. Parallelism: GPUs can process thousands of tasks together.
  2. Tensor Cores: Accelerate matrix operations, which are critical for deep learning.
  3. Scalability: GPUs can be scaled across multiple devices to handle even larger workloads.
  4. AI Frameworks: Popular frameworks like TensorFlow and PyTorch are optimized for GPUs, making easy to leverage GPU’s power.

Conclusion

By understanding the architecture of GPUs — CUDA cores, SMs, threads, warps, and memory hierarchy — you can unlock their full potential for your applications. This blog is a very introductory and basic guide to CUDA programming, designed to help you take your first steps in understanding how GPUs work and how to write simple CUDA programs. In future blogs, we will dive deeper into more complex examples and explore optimization techniques for real-world applications, such as implementing operations like SoftMax, matrix multiplication, and other advanced algorithms used in AI and scientific computing.

Source

  1. CUDA by Example — NVIDIA DEVELOPER
  2. CUDA Refresher: The CUDA Programming Model
  3. GPT

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->