Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

What Are Baseline Models and Benchmarking For Machine Learning, Why We Need Them? Part 1 Classification
Latest   Machine Learning

What Are Baseline Models and Benchmarking For Machine Learning, Why We Need Them? Part 1 Classification

Last Updated on July 26, 2023 by Editorial Team

Author(s): Hasan Basri Akçay

Originally published on Towards AI.

Machine Learning

Random, Machine Learning, Automated ML Baseline Models and Benchmarking For ML…

High Jump Olympics — Source Here

We can train a machine learning model with any prepared data but how can we be sure about the machine learning model learned from train data? The objective of this article is to explain baseline models in data science.

You can see the dataset here and you can see full python code at the end of the article.

What is Baseline Model?

The baseline models are references for our trained ML models. With baseline models, data scientists try to explain how their trained model is good and the score of the baseline model is the threshold for the data scientist.

What are Types of Baseline Model?

There are three types of the baseline model that are Random Baseline Models, ML Baseline Models, and Automated ML Baseline Models.

Random Baseline Models

In the real world, data can not always be predictable. In these such problems, the best baseline model is a dummy classifier or dummy regressor. That baseline model shows you to your ml model is learning or not. You can see how to use random baseline models below.

Firstly we create a random dataset for classification.

import pandas as pd
import numpy as np
np.random.seed(0)
random_dim = (1000,3)
random_X = np.random.random(random_dim)
random_reg_y = np.random.random(random_dim[0])
random_clf_y = np.random.randint(random_dim[1], size=random_dim[0])
train_clf = np.concatenate((random_X, random_clf_y.reshape(random_dim[0], 1)), axis=1)
col_list = [str(i +1) for i in range(random_dim[1])]
col_list.append('target')
train_clf = pd.DataFrame(train_clf, columns=col_list)
train_clf['target'] = train_clf['target'].astype('str')
train_clf
Random Classification Dataset — image by author

Then we compare machine learning models by using the pycaret compare_models function. According to the results, the best model is Dummy Classifier because there is no relationship between features and target.

from pycaret.classification import *clf = setup(data=train_clf, 
target='target',
numeric_features=col_list[:-1],
silent=True)
compare_models(sort='Accuracy')
Dummy Classifier — image by author

Machine Learning Baseline Models

If data is predictable, the second step is to create an ml baseline model. This baseline model shows us which feature is important for prediction and which is not. Generally, ml baseline models use with feature engineering.

1. Baseline Scores

The first step is score calculations of the baseline ml model.

from pycaret.classification import *

CAT_FEATURES = ['Sex', 'Embarked']
NUM_FEATURES = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
IGN_FEATURES = ['PassengerId', 'Name', 'Ticket', 'Cabin']

clf = setup(data=titanic_train,
target='Survived',
categorical_features = CAT_FEATURES,
numeric_features = NUM_FEATURES,
ignore_features = IGN_FEATURES)
baseline_model = create_model('rf')

baseline_preds = predict_model(baseline_model, raw_score=True)
baseline_preds
Baseline Model (Random Forest) Scores — image by author

2. Feature Engineering

In this part, we add new features to the dataset.

import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

# Name
titanic_train_FeaEng = titanic_train.copy()
name_last = titanic_train_FeaEng['Name'].str.split(' ', n=1, expand=True)[1]
title = name_last.str.split(' ', n=1, expand=True)[0]
titanic_train_FeaEng['Title'] = title

name_len = titanic_train_FeaEng['Name'].str.len()
titanic_train_FeaEng['Name_len'] = name_len

# Cabin
cabin_first = []
cabin_last = []
cabin_len = []

for cabin in titanic_train_FeaEng['Cabin']:
try:
re_list = re.split('(\d+)',cabin)
if len(re_list) > 1:
cabin_first.append(re_list[0])
cabin_last.append(int(re_list[-2]))
cabin_len.append(len(re_list))
else:
cabin_first.append('None')
cabin_last.append(0)
cabin_len.append(0)
except:
cabin_first.append('None')
cabin_last.append(0)
cabin_len.append(0)

titanic_train_FeaEng['Cabin_First'] = cabin_first
titanic_train_FeaEng['Cabin_Last'] = cabin_last
titanic_train_FeaEng['Cabin_Len'] = cabin_len

...

3. Features Importance

After feature engineering, we will add new features to the dataset one by one and we look at the score of baseline machine learning. If we have a better score, it means the new feature is good for predictions.

feature_score_dict = {}

for index, feature in enumerate(new_features):
old_features_temp = old_features.copy()
old_features_temp.append(feature)
titanic_train_FeaEng_temp = titanic_train_FeaEng[
old_features_temp].copy()

clf = setup(data=titanic_train_FeaEng_temp,
target='Survived')

baseline_model = create_model('rf')
scores = pull()
feature_score_dict[feature] = scores

4. Score Data Preparations

In this part, we prepare the dataset that includes scores for visualization.

metric_list = []
feature_list = []
score_list = []

for key in feature_score_dict.keys():
metric_list.extend(list(feature_score_dict[key].columns))
score_list.extend(list(feature_score_dict[key].loc['Mean', :]))
feature_list.extend([key for i in range(len(feature_score_dict[key].columns))])

all_scores_pd = pd.DataFrame()
all_scores_pd['Metric'] = metric_list
all_scores_pd['Feature'] = feature_list
all_scores_pd['Score'] = score_list

5. Visualization

import matplotlib.pyplot as plt
import seaborn as sns

col_list = ['Accuracy', 'AUC', 'Recall', 'Prec.', 'F1', 'Kappa']
score_color = {'Accuracy':'C0', 'AUC':'C1', 'Recall':'C2', 'Prec.':'C3', 'F1':'C4', 'Kappa':'C5'}
...
New Feature Importance For Prediction— image by author

Automated Machine Learning Baseline Models

The final baseline model is the automated ml baseline model. It is a very good model for benchmarking your ml model. If your ml model is better than the automated baseline model, it is a very strong sign that the model can become a product.

1. LightAutoML

Firstly we install and import the lightautoml library.

%%capture
!pip install -U lightautoml
# Imports from our package
from lightautoml.automl.presets.tabular_presets import TabularAutoML, TabularUtilizedAutoML
from lightautoml.dataset.roles import DatetimeRole
from lightautoml.tasks import Task

import torch

After that, we prepare the task, role, and metric for the lightautoml library.

from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score

N_THREADS = 4 # threads cnt for lgbm and linear models
N_FOLDS = 5 # folds cnt for AutoML
RANDOM_STATE = 42 # fixed random state for various reasons
TEST_SIZE = 0.2 # Test size for metric check
TIMEOUT = 300 # Time in seconds for automl run

np.random.seed(RANDOM_STATE)
torch.set_num_threads(N_THREADS)

def acc_score(y_true, y_pred, **kwargs):
return accuracy_score(y_true, (y_pred > 0.5).astype(int), **kwargs)

def f1_metric(y_true, y_pred, **kwargs):
return f1_score(y_true, (y_pred > 0.5).astype(int), **kwargs)

task = Task('binary', metric = acc_score)

roles = {
'target': 'Survived',
'drop': ['Passengerid', 'Name', 'Ticket'],
}

Now, we can calculate the cross-validation score by using the below code.

%%time 
from sklearn.model_selection import StratifiedKFold

n_fold = 3
skf = StratifiedKFold(n_splits=n_fold)
skf.get_n_splits(titanic_train)

...
print('lightautoml_acc_score: ', lightautoml_acc_score)lightautoml_acc_score: 0.7957351290684626

2. H2O AutoML

Firstly we import the h2o library.

import h2o
from h2o.automl import H2OAutoML
h2o.init()
H2O Init — image by author

Now, we can calculate the cross-validation score by using the below code.

%%time
acc_list = []
for train_index, test_index in skf.split(titanic_train, titanic_train['Survived']):
X_train, X_test = titanic_train.loc[train_index, :], titanic_train.loc[test_index, :]
y = X_test['Survived'].astype(int)
X_test.drop(['Survived'], axis=1, inplace=True)
...print('h2o_tautoml_acc_score: ', h2o_tautoml_acc_score)h2o_tautoml_acc_score: 0.8271604938271605

3. Visualization

After calculation of score of the auto ml models. Now, you can see scores that you should pass for strong ml production below.

fig, ax = plt.subplots(figsize=(24, 8))
ax.plot([0, 10], [h2o_tautoml_acc_score, h2o_tautoml_acc_score], color='r')
ax.text(10, h2o_tautoml_acc_score, 'Base_H2O')
ax.plot([0, 10], [lightautoml_acc_score, lightautoml_acc_score], color='r')
ax.text(10, lightautoml_acc_score, 'Base_LightAutoMl');
Auto ML Scores — image by author

In this part of the article, we talked about baseline model types in classification problems. In the second part of the article, we will talk about baseline models in regression problems.

You can see full python code and all plots from here U+1F449 Kaggle Notebook.

U+1F44B Thanks for reading. If you enjoy my work, don’t forget to like it, follow me on Medium and LinkedIn. It will motivate me in offering more content to the Medium community! U+1F60A

References:

[1]: https://www.kaggle.com/hasanbasriakcay/baseline-models-clf-random-ml-automl
[2]: https://www.kaggle.com/c/titanic/data
[3]: https://pycaret.gitbook.io/docs/
[4]: https://lightautoml.readthedocs.io/en/latest/index.html
[5]: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

More…

Welcome, 2022U+1F389. What Has Changed in Data Science in 2021?

Best Data Science Tools, Methods, and Techniques such as Cloud Computing Product, Automated ML Tools, Courses, IDEs…

medium.com

What Are The Differences Between Data Scientists That Earn 500U+1F4B2 And 225.000U+1F4B2 Yearly?

This article is about important talents, tools, features of the country, and features of the company for high income in…

medium.com

5 Important Python Libraries and Methods For Data Scientists!

Most of the python libraries are already written for data science but newbies working in data science and machine…

medium.com

Olympic Medal Numbers Predictions with Time Series, Part 2: Data Analysis

Fbprophet, Darts, AutoTS, Arima, Sarimax, and Monte Carlo Simulation

medium.com

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->