Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

This AI newsletter is all you need #45
Latest   Machine Learning

This AI newsletter is all you need #45

Last Updated on July 25, 2023 by Editorial Team

Author(s): Towards AI Editorial Team

Originally published on Towards AI.

What happened this week in AI by Louie

This week witnessed several releases and developments in AI models, continuing the trend of open-source model alternatives. Among these, two popular consumer-facing LLM-based products, ChatGPT, and Github Co-pilot, faced new open-sourced competition with HuggingChat and Replit-Code, respectively. The focus on regulation and AI safety persisted as ChatGPT access was restored in Italy, and AI pioneer Geoffrey Hinton left Google partly due to his concerns about AI safety.

Geoffrey Hinton has played a key role in many of the key breakthroughs in machine learning and the path to transformers and the recent success of LLMs, from backpropagation in 1986 to Alexnet in 2012. Hinton quit Google in part so he could talk more freely about the risks of AI, amid a recent adjustment of his views on the potential of AI and heightening competition between Google and Microsoft. “The idea that this stuff could actually get smarter than people — a few people believed that,” “But most people thought it was way off. And I thought it was way off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.”

Hinton’s changing views and his increased perception of AI risk are a testament to the rapid progress in AI over the past year and illustrate just how little we really know about LLMs and what progress or roadblocks we might find even six months ahead. While we find many arguments over both AI’s positive potential and risks (or lack thereof) are made with overconfidence given still huge uncertainty, Hinton’s deep and earned respect in the community and flexible and measured views carry particular weight.

Towards AI and Learn Prompting are Announcing the HackAPrompt competition!

We are thrilled to announce the first-ever prompt hacking competition, HackAPrompt, aimed at enhancing AI safety. In this competition, participants will try to hack as many prompts as possible by injecting, leaking, and defeating the sandwich defense. The competition is designed to be beginner-friendly, welcoming even non-technical people to participate.

Register now to win prizes worth over $35,000!

Launching on: May 5th at 6:00 PM EST

Hottest News

  1. Hugging Face release their own AI chatbot named HuggingChat

Hugging Face has launched a new open-source chatbot model named HuggingChat, which is considered an alternative to OpenAI’s ChatGPT. Users can test the model via a web interface, and it can also be integrated into existing apps and services through Hugging Face’s API.

2. From DrakeGPT to Infinite Grimes, AI-generated music strikes a chord

Last week, a song that used AI deepfakes of Drake and the Weeknd’s voices gained popularity. In the meantime, Grimes has announced on Twitter that she will offer 50% royalties for any AI-generated song that features her voice. Musicians such as Holly Herndon and YACHT have adopted AI as a tool to push the boundaries of their creativity.

3. Amazon plan to improve Alexa using large language models

During Amazon’s first-quarter earnings call, CEO Andy Jassy announced that the company is developing a more advanced large language model (LLM) to power Alexa. Jassy stated that the upgraded LLM will be “more generalized and capable,” and that it will help Amazon reach its goal of creating “the world’s best personal assistant.”

4. ChatGPT Will See You Now: Doctors Using AI to Answer Patient Questions

UC San Diego Health, UW Health, and Stanford Health Care are collaborating to test a tool that leverages OpenAI’s GPT to read patient messages and generate draft responses for their doctors. The pilot program’s goal is to determine if AI can reduce the amount of time that medical staff spends responding to patients’ online inquiries.

5. Replit introduced replit-code-v1–3b on ReplitDevDay

During #ReplitDevDay, Replit unveiled replit-code-v1–3b, a new AI language model with 2.7 billion parameters. The model was trained on 525 billion tokens in just 10 days and demonstrates 40% better performance than similar models.

Five 5-minute reads/videos to keep you learning

  1. The Complete Beginners Guide To Autonomous Agents

The article discusses the trend of “autonomous agents” among AI developers. It covers various topics such as the definition of autonomous agents, the opportunities they present, how they work, their potential future, and ways to build or use them. It also provides insights on how to connect with like-minded people interested in autonomous agents.

2. Why do we need RL for language models?

The argument for RL is based on knowledge-seeking queries where we expect truthful answers, and the ability of the model to respond with “I don’t know” or refuse to answer in situations where it is uncertain. For this type of interaction, RL training must be used as supervised training may teach the model to lie.

3. The future of generative AI is niche, not generalized

ChatGPT has led to speculation about artificial general intelligence (AGI). However, the next phase of AI will likely be in specific domains and contexts. The true value of these systems lies not in their use as generalist chatbots, but rather as a class of tools that can be applied to niche domains, offering new ways to discover and explore highly specific information.

4. Navigating the High Cost of AI Compute

This post presents a framework for analyzing the cost factors of an AI company. It covers the time and costs involved in building an AI system, provides a comparative analysis of CSPs and GPUs, and discusses how the costs are likely to evolve over time.

5. Introducing Hidet: A Deep Learning Compiler for Efficient Model Serving

Hidet is a deep learning compiler that simplifies the process of implementing high-performing deep learning operators on modern accelerators like NVIDIA GPUs. It originated from a research project led by the EcoSystem lab at the University of Toronto (UofT) in collaboration with AWS.

Papers & Repositories

  1. AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head

AudioGPT is a resource designed for audio applications and tasks such as speech recognition, synthesis, sound detection, and talking head synthesis. However, at present, this model is only available for non-commercial use.

2. Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

This paper offers a comprehensive and practical guide for practitioners and end-users who work with LLMs in their NLP tasks. Additionally, it provides researchers and practitioners with valuable insights and best practices for working with LLMs.

3. Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning

This paper examines whether Deep RL can generate complex and safe movement skills at a low cost. While the agents were optimized for scoring, in experiments they walked 156% faster, took 63% less time to get up, and kicked 24% faster than a scripted baseline.

4. Are Emergent Abilities of Large Language Models a Mirage?

This paper proposes an alternative explanation for emergent abilities in artificial intelligence (AI). Specifically, it suggests that for a given task and model family, the choice of metric used to analyze fixed model outputs can lead to the inference of an emergent ability or the lack thereof. The analysis conducted provides compelling evidence to suggest that emergent abilities may not be a fundamental property of scaling AI models.

5. Controlled Text Generation with Natural Language Instructions

This paper introduces InstructCTG, a framework for generating controlled text that incorporates various constraints. This is achieved by conditioning natural language descriptions and demonstrations of the constraints.

Enjoy these papers and news summaries? Get a daily recap in your inbox!

The Learn AI Together Community section!

Weekly AI Podcast

In this week’s episode of the “What’s AI” podcast, Louis Bouchard interviews Limarc Ambalina, VP at HackerNoon, to discuss the impact of AI on writing and journalism. Limarc shares his journey and offers advice for aspiring writers. The episode covers topics such as AI-generated content, how it differs from AI-edited content, how AI can aid writers, and ethics surrounding AI-generated content. Tune in to the podcast for insights on content writing with AI on HackerNoon and more. You can find the podcast on YouTube, Spotify, or Apple Podcasts.

Upcoming Community Events

The Learn AI Together Discord community hosts weekly AI seminars to help the community learn from industry experts, ask questions, and get a deeper insight into the latest research in AI. Join us for free, interactive video sessions hosted live on Discord weekly by attending our upcoming events.

  1. HackAPrompt Livestream- Come and brainstorm (For $35000)

HackAPrompt is aimed at enhancing AI safety. In this competition, participants will try to hack as many prompts as possible by injecting, leaking, and defeating the sandwich defense. The competition is designed to be beginner-friendly, welcoming even non-technical people to participate.

Date & Time: 5th May 7:00 pm EST

2. Prompt Engineering Mastermind

This event is designed to help participants learn how to iterate and enhance ChatGPT prompts. Greg will share his screen displaying ChatGPT, and he will paste a prompt from a member of the audience. Then, we will work together to improve the prompt. This collaborative seminar invites suggestions from the chat participants and shares the tips and techniques that Greg has learned.

Date & Time: 4th May 1:00 pm EST

3. ChatGPT and Google Maps Hands-on Workshop

@george.balatinski is hosting a workshop to harness the power of ChatGPT to create real-world projects for the browser using JavaScript, CSS, and HTML. The interactive sessions are focused on building a portfolio, guiding you to create a compelling showcase of your talents, projects, and achievements. Engage in pair programming exercises, work side-by-side with fellow developers, and foster hands-on learning and knowledge sharing. In addition, we offer valuable networking opportunities with our and other communities in Web and AI. Discover how to seamlessly convert code to popular frameworks like Angular and React and tap into the limitless potential of AI-driven development. Don’t miss this chance to elevate your web development expertise and stay ahead of the curve. Join us at our next meetup here and experience the future of coding with ChatGPT! You can get familiar with some of the additional content here.

Date & Time: 2nd June, 12:00 pm EST

Add our Google calendar to see all our free AI events!

Meme of the week!

Meme shared by dimkiriakos#2286

Featured Community post from the Discord

Jorge.jgnz#2451 has trained a Video Diffusion model (DDPM+time) using a synthetic dataset of small fluid simulations, which is now available on HuggingFace. He has implemented temporal inpainting to perform video prediction by masking the first half of the video and allowing the model to predict the second half. You can find the dataset on HuggingFace and support a fellow community member. Share your feedback or questions in the thread here.

AI poll of the week!

Join the discussion on Discord

TAI Curated section

Article of the week

How to Train Neural Networks With Fewer Data Using Active Learning by Leon Eversberg

This article covers the current state of the art in deep active learning by outlining Active Learning. One of the biggest problems in supervised deep learning is the scarcity of labeled training data. This is where active learning comes in. Not all training data samples are equally valuable to the training process, by selecting only the most valuable training samples, active learning attempts to minimize the amount of labeled training data required.

Our must-read articles

From Detection to Correction: How to Keep Your Production Data Clean and Reliable by Youssef Hosni

Mastering Linear Regression: A Step-by-Step Guide by Anushka sonawane

PyTorch Lightning: An Introduction to the Lightning-Fast Deep Learning Framework by Anay Dongre

If you are interested in publishing with Towards AI, check our guidelines and sign up. We will publish your work to our network if it meets our editorial policies and standards.

Job offers

Machine Learning Engineer, Multimodal Generation — EMEA @HuggingFace (Remote)

Applied Machine Learning Engineer @Snorkel AI (Remote)

Software Engineer, Model Inference @Open AI (San Francisco, CA, USA)

Data Scientist, Content @Patreon (San Francisco, CA, USA)

Machine Learning Researcher @Figma (San Francisco/New York, USA)

Interested in sharing a job opportunity here? Contact sponsors@towardsai.net.

If you are preparing your next machine learning interview, don’t hesitate to check out our leading interview preparation website, confetti!

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->