Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

The NLP Cypher | 02.28.21
Latest   Machine Learning   Newsletter

The NLP Cypher | 02.28.21

Last Updated on July 24, 2023 by Editorial Team

Author(s): Ricky Costa

Originally published on Towards AI.

The Human Condition U+007C Magritte

NATURAL LANGUAGE PROCESSING (NLP) WEEKLY NEWSLETTER

The NLP Cypher U+007C 02.28.21

Zeroshot

Hey welcome back! Plenty to talk about this week. But first some quick housekeeping. We’ll be updating the Super Duper NLP Repo this upcoming week… finally U+1F601. If you have an awesome NLP notebook to add drop us a note on our contact page and we’ll give you a shoutout on our update tweet. … U+1F680

Ok, if you own a KIA automobile please read this…U+1F447

KIA was apparently hacked with ransomware earlier this month, and the actors want to be paid in full. They are asking for a cool $21 million in BTC. KIA has denied the allegations it was ever hacked although they recently suffered network outages.

Read more here.

Consequences of the Hack U+1F440

“Kia’s key connected services remain offline, meaning customers are unable to pay their car loans, remotely start their vehicles, or other functions using Kia’s infrastructure.” — the drive blog

A *PSEUDO* DALL-E Appears From the Ashes

OpenAI opened the week with a pre-emptive strike w/r/t its DALL-E project by releasing *part* of the model. They released the image reconstruction *part* d-VAE. The actual encoder language model remains out of pocket, and without this, we can’t actually achieve what they demo’d in their paper.

openai/DALL-E

PyTorch package for the discrete VAE used for DALL·E. – openai/DALL-E

github.com

OpenAI’s CLIP Implementations:

If you’re still interested in OpenAI’s CLIP, we found a YUUUGE list on Reddit highlighting a ton of Colab/Jupyter notebooks running the model!! U+1F525U+1F525

U+26A0 WARNING length of list may impair your judgement, we recommend you avoid driving or operating heavy machinery while reading. U+26A0

  1. The Big Sleep: BigGANxCLIP.ipynb — Colaboratory by advadnoun. Uses BigGAN to generate images. To my knowledge, this is the first CLIP-steered BigGAN app that was released. Instructions and examples. Notebook copy by levindabhi.
  2. (Added Feb. 15, 2021) Drive-Integrated The Big Sleep: BigGANxCLIP.ipynb — Colaboratory by advadnoun. Uses BigGAN to generate images.
  3. Big Sleep — Colaboratory by lucidrains. Uses BigGAN to generate images. The GitHub repo has a local machine version. GitHub.
  4. The Big Sleep Customized NMKD Public.ipynb — Colaboratory by nmkd. Uses BigGAN to generate images. Allows multiple samples to be generated in a run.
  5. Text2Image — Colaboratory by tg_bomze. Uses BigGAN to generate images. GitHub.
  6. Text2Image_v2 — Colaboratory by tg_bomze. Uses BigGAN to generate images. GitHub.
  7. Text2Image_v3 — Colaboratory by tg_bomze. Uses BigGAN (default) or Sigmoid to generate images. GitHub.
  8. (Added Feb. 26, 2021) Image Guided Big Sleep Public.ipynb — Colaboratory by jdude_. Uses BigGAN to generate images. Reddit post.
  9. ClipBigGAN.ipynb — Colaboratory by eyaler. Uses BigGAN to generate images/videos. GitHub. Notebook copy by levindabhi.
  10. WanderCLIP.ipynb — Colaboratory by eyaler. Uses BigGAN (default) or Sigmoid to generate images/videos. GitHub.
  11. Story2Hallucination.ipynb — Colaboratory by bonkerfield. Uses BigGAN to generate images/videos. GitHub.
  12. (Added around Feb. 7, 2021) Story2Hallucination_GIF.ipynb — Colaboratory by bonkerfield. Uses BigGAN to generate images. GitHub.
  13. (Added Feb. 24, 2021) Colab-BigGANxCLIP.ipynb — Colaboratory by styler00dollar. Uses BigGAN to generate images. “Just a more compressed/smaller version of that [advadnoun’s] notebook”. GitHub.
  14. CLIP-GLaSS.ipynb — Colaboratory by Galatolo. Uses BigGAN (default) or StyleGAN to generate images. The GPT2 config is for image-to-text, not text-to-image. GitHub.
  15. (Added Feb. 15, 2021) dank.xyz. Uses BigGAN or StyleGAN to generate images. An easy-to-use website for accessing The Big Sleep and CLIP-GLaSS. To my knowledge this site is not affiliated with the developers of The Big Sleep or CLIP-GLaSS. Reddit reference.
  16. (Added Feb. 25, 2021) Aleph-Image: CLIPxDAll-E.ipynb — Colaboratory by advadnoun. Uses DALL-E’s discrete VAE (variational autoencoder) component to generate images. Twitter reference. Reddit post.
  17. (Added Feb. 26, 2021) Aleph2Image (delta): CLIP+DALL-E decoder.ipynb — Colaboratory by advadnoun. Uses DALL-E’s discrete VAE (variational autoencoder) component to generate images. Twitter reference. Reddit post.
  18. (Added Feb. 27, 2021) Copy of working wow good of gamma aleph2img.ipynb — Colaboratory by advadnoun. Uses DALL-E’s discrete VAE (variational autoencoder) component to generate images. Twitter reference.
  19. (Added Feb. 27, 2021) Aleph-Image: CLIPxDAll-E (with white blotch fix #2) — Colaboratory by thomash. Uses DALL-E’s discrete VAE (variational autoencoder) component to generate images. Applies the white blotch fix mentioned here to advadnoun’s “Aleph-Image: CLIPxDAll-E” notebook.
  20. (Added Feb. 14, 2021) GA StyleGAN2 WikiArt CLIP Experiments — Pytorch — clean — Colaboratory by pbaylies. Uses StyleGAN to generate images. More info.
  21. (Added Feb. 15, 2021) StyleCLIP — Colaboratory by orpatashnik. Uses StyleGAN to generate images. GitHub. Twitter reference. Reddit post.
  22. (Added Feb. 15, 2021) StyleCLIP by vipermu. Uses StyleGAN to generate images.
  23. (Added Feb. 24, 2021) CLIP_StyleGAN.ipynb — Colaboratory by levindabhi. Uses StyleGAN to generate images.
  24. (Added Feb. 23, 2021) TediGAN — Colaboratory by weihaox. Uses StyleGAN to generate images. GitHub. I got error “No pre-trained weights found for perceptual model!” when I used the Colab notebook, which was fixed when I made the change mentioned here. After this change, I still got an error in the cell that displays the images, but the results were in the remote file system. Use the “Files” icon on the left to browse the remote file system.
  25. TADNE and CLIP — Colaboratory by nagolinc. Uses TADNE (“This Anime Does Not Exist”) to generate images. GitHub.
  26. CLIP + TADNE (pytorch) v2 — Colaboratory by nagolinc. Uses TADNE (“This Anime Does Not Exist”) to generate images. Instructions and examples. GitHub. Notebook copy by levindabhi
  27. (Added Feb. 24, 2021) clipping-CLIP-to-GAN by cloneofsimo. Uses FastGAN to generate images.
  28. CLIP & gradient ascent for text-to-image (Deep Daze?).ipynb — Colaboratory by advadnoun. Uses SIREN to generate images. To my knowledge, this is the first app released that uses CLIP for steering image creation. Instructions and examples. Notebook copy by levindabhi.
  29. Deep Daze — Colaboratory by lucidrains. Uses SIREN to generate images. The GitHub repo has a local machine version. GitHub. Notebook copy by levindabhi.
  30. CLIP-SIREN-WithSampleDL.ipynb — Colaboratory by norod78. Uses SIREN to generate images.
  31. (Added Feb. 17, 2021) Text2Image Siren+.ipynb — Colaboratory by eps696. Uses SIREN to generate images. Twitter reference. Example #1. Example #2. Example #3.
  32. (Added Feb. 24, 2021) Colab-deep-daze — Colaboratory by styler00dollar. Uses SIREN to generate images. I did not get this notebook to work, but your results may vary. GitHub.
  33. (Added Feb. 18, 2021) Text2Image FFT.ipynb — Colaboratory by eps696. Uses FFT (Fast Fourier Transform) from Lucent/Lucid to generate images. Twitter reference. Example #1. Example #2.

Recent Advances in Language Model Fine-Tuning

Sebastian Ruder, one of the pioneers of transfer learning in NLP, has an awesome new blog post on the recent advances in fine-tuning. The five categories below are discussed. This is a must read if you are anywhere near the realm of NLP.

declassified

Recent Advances in Language Model Fine-tuning

Fine-tuning a pre-trained language model (LM) has become the de facto standard for doing transfer learning in natural…

ruder.io

Visualizing Community Structure in Graphs

Communities is a Python library for detecting community structure in graphs. It implements the following algorithms:

Louvain method

Girvan-Newman algorithm

Hierarchical clustering

Spectral clustering

Bron-Kerbosch algorithm

shobrook/communities

communities is a Python library for detecting community structure in graphs. It implements the following algorithms…

github.com

The Overflow U+007C Python Stats

Helpful post on the Stack Overflow blog discussing Python libraries such as numpy, pandas, matplotlib, and seaborn. There’s a YouTube Video on the page where they explore a New York City housing dataset. This is on the introductory level.

Level Up: Mastering statistics with Python – part 2 – Stack Overflow Blog

Welcome back! This is the second class in our Level Up series. If you're just tuning in, you can catch up on what we're…

stackoverflow.blog

BertViz

BertViz is a tool for visualizing attention in the Transformer model, supporting all models from the transformers library (BERT, GPT-2, XLNet, RoBERTa, XLM, CTRL, etc.)

Includes a Colab U+1F60E

jessevig/bertviz

BertViz is a tool for visualizing attention in the Transformer model, supporting all models from the transformers…

github.com

Contextualized Topic Models

Check out this awesome library if you are into topic modeling. They include a zeroshot cross-lingual variant and also a bag-of-words approach for various use-cases.

MilaNLProc/contextualized-topic-models

Contextualized Topic Models (CTM) are a family of topic models that use pre-trained representations of language (e.g…

github.com

Software UpdatesU+007C PyTorch Lightning

New Features:

PyTorch Lightning V1.2.0

Including new integrations with DeepSpeed, PyTorch profiler, Pruning, Quantization, SWA, PyTorch Geometric and more.

pytorch-lightning.medium.com

Software UpdatesU+007C Hugging Face

A new library from HF for pruning models resulting in fewer parameters while maintaining accuracy. Their sparsity notebook can be found on the Super Duper NLP Repo.

huggingface/nn_pruning

An interactive version of this site is available here. has been proved as a very efficient method to prune networks in…

github.com

Repo Cypher U+1F468‍U+1F4BB

A collection of recently released repos that caught our U+1F441

Few-Shot-Learning

A codebase to perform few-shot “in-context” learning using language models similar to the GPT-3 paper.

tonyzhaozh/few-shot-learning

This is a codebase to perform few-shot “in-context” learning using language models similar to the GPT-3 paper. In…

github.com

Connected Papers U+1F4C8

Graphs and Electronic Health Records

Model outperforms the existing graph and non-graph based methods in various electronic health records predictive tasks based on both public data and real-world clinical data.

NYUMedML/GNN_for_EHR

This repository contains the code for the paper Variationally Regularized Graph-based Representation Learning for…

github.com

Code Generation with GPT-2

Fine-tuning GPT-2 on CodeSearchNet for Code Generation

kandluis/code-gen

From /cs230/gpt-2-csn: $ pip install -r path/to/requirements.txt $ python download_model.py 117M Note that…

github.com

Connected Papers U+1F4C8

REMOD: Relation Extraction for Modeling Online Discourse

sdfsd

mjsumpter/remod

The following are the instructions to strictly reproduce the results cited in the paper. The necessary packages can be…

github.com

Connected Papers U+1F4C8

Argument Structure Prediction

This code can be used to train a set of neural networks to jointly perform Link Prediction, Relation Classification, and Component Classification on select argument mining corpora.

AGalassi/StructurePrediction18

Use of residual deep networks, ensemble learning, and attention for Argument Structure Prediction. This code can be…

github.com

Connected Papers U+1F4C8

Dataset of the Week: EmotionGIF 2020 Challenge

What is it?

Dataset contains 40,000 tweets and their GIF responses, labeled with the categories of the animated GIFs. The challenge: given unlabeled tweets, predict the category/categories of a GIF response. The GIFs are stored as MP4 files.

Sample

“idx”: 32,

“text”: “Fell right under my trap”,

“reply”: “Ouch!”,

“categories”: [‘awww’,’yes’,’oops’],

“mp4”: “fe6ec1cd04cd009f3a5975e2d288ff82.mp4”

Where is it?

EmotionGIF 2020 – Dataset

The EmotionGIF 2020 Challenge has ended. The big winner of both Rounds, with a total of participating teams, is Team…

sites.google.com

Every Sunday we do a weekly round-up of NLP news and code drops from researchers around the world.

For complete coverage, follow our Twitter: @Quantum_Stat

Quantum Stat

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->