Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

SUPPORT VECTOR MACHINES : PREDICTING FUTURE – CASE STUDY
Latest

SUPPORT VECTOR MACHINES : PREDICTING FUTURE – CASE STUDY

Last Updated on December 21, 2022 by Editorial Team

Author(s): Data Science meets Cyber Security

Originally published on Towards AI the World’s Leading AI and Technology News and Media Company. If you are building an AI-related product or service, we invite you to consider becoming an AI sponsor. At Towards AI, we help scale AI and technology startups. Let us help you unleash your technology to the masses.

SUPPORT VECTOR MACHINES: PREDICTING FUTURE – CASE STUDY

CONTINUATION OF SUPERVISED LEARNING METHODS: PART-3

As previously promised in SUPPORT VECTOR MACHINE — 3RD PART OF SUPERVISED LEARNING METHODS, let’s talk about an amazing case study to analyze and comprehend the application of support vector into a real business problem and be ready for the amazing outcomes and prediction no one actually saw coming.

IMAGE SOURCE: https://giphy.com/

PROBLEM STATEMENT :

In this problem statement, we’ll study the case where we’ll try to predict whether the person will survive based on the diagnostic factors influencing Hepatitis.

Let’s first talk about the dataset we are going to use. The dataset contains the occurrences of hepatitis in people.

WHAT ABOUT THE SOURCE OF THIS DATASET?

IMAGE SOURCE: https://tenor.com/ + PHOTOSHOPPED

The UCI machine learning repository was used to get this data set.. It has 155 recordings in two separate types, 32 of which are death records and 123 of which are live records. There are 20 characteristics in the dataset (14 binary and 6 numerical attributes)

We’ll use a number of methods in this case study to successfully predict whether the person will survive or not based on the diagnostic factors influencing Hepatitis on the right error metrics. One of these methods would be the CONFUSION MATRIX.

If you are unclear about this pitch, please refer to our prior blog post on confusion metrics. (Comes under the blog WORLD OF CLASSIFICATION)

IMAGE SOURCE: https://lwmachinelearning.wordpress.com/portfolio/unbalanced-data-credit-card-fraud-detection/

LET’S BEGIN WITH THE PRACTICAL PART:

IMAGE SOURCE: https://giphy.com/

STEP1: LOADING THE REQUIRED AND MANDATORY LIBRARIES:

#THIS WILL HELP US IGNORE THE WARNINGS WHILE RUNNING OUR CODE
import warnings
warnings.filterwarnings("ignore")

import os
import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder

from sklearn.impute import SimpleImputer

from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, f1_score

from sklearn.model_selection import GridSearchCV

STEP2: READING THE HEPATITIS DATASET:

data = pd.read_csv("/content/hepatitis.csv")

EXPLORATORY DATA ANALYSIS:

IMPORTANCE: An EDA is a detailed analysis designed to reveal a data set’s underlying structure. It is significant for a business problem because it reveals trends, patterns, and linkages that are not immediately obvious.

#Checking the dimensions (rows and columns)
data.shape

#Checking the datatypes of each variable
data.dtypes

#Checking the head of the data (i.e top 5 rows)
data.head()

#Checking the basic summary statistics
data.describe()
#Checking the number of unique levels in each attribute
data.nunique()

#Target attribute Distribution
data.target.value_counts()

data.target.value_counts(normalize=True)*100

STEP3: DATA PRE-PROCESSING:

WHY WE NEED TO PRE-PROCESS DATA EXACTLY?

IMAGE SOURCE: https://giphy.com/

Every time we decide to work with data, the first step is to gather the data, which is typically in the unclassified and uncleaned form. Once we start working with this data, it becomes very challenging for the data scientist to find clear patterns and outcomes through that type of data, which can result in many false positives and negatives as well as confusion.

So, in order to prevent this kind of a mess, we clean and preprocess the raw data to increase accuracy and dependability. We also eliminate missing (i.e., null spaces within the data) or inconsistent data values to allow algorithms or models to run smoothly without experiencing any significant error values.

In order to make the raw data more comprehensible, practical, and effective, data pre-processing is also regarded as a crucial method employed in data mining. This entire data pre-processing procedure aids in improving our outcomes.

#Let's drop the columns which are not that signicant and in use
data.drop(["ID"], axis = 1, inplace=True)
#Storing categorical and numerical values:
num_cols = ["age", "bili", "alk", "sgot", "albu", "protime"]
cat_cols = ['gender', 'steroid', 'antivirals', 'fatigue', 'malaise', 'anorexia', 'liverBig',
'liverFirm', 'spleen', 'spiders', 'ascites', 'varices', 'histology']

#Checking the head of dataset once again to see how dataframe looks
data.head()

#Converting the attributes into appropriate type to avoid the future error
data[cat_cols] = data[cat_cols].astype('category')
#After converting the attribute types check the datatypes to be sure once again
data.dtypes

STEP4: SPLITTING DATA INTO ‘X’ AND ‘Y’:


#Time to split the data into X and Y
X = data.drop(["target"], axis = 1)
y = data["target"]
#Getting the shape of data
print(X.shape, y.shape)
#Training the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 123, stratify=y)
#Getting the shape of trained data to find the difference between untrained and trained data.
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
#Check for distribution target variables
y_train.value_counts()

y_train.value_counts(normalize=True)*100

STEP5: DATA PRE-PROCESSING AFTER SPLITTING THE DATA INTO ‘X’ AND ‘Y’:

#Checking the null values
X_train.isna().sum()

X_test.isna().sum()

IMPUTATION MISSING CATEGORICAL COLUMNS WITH MODE:

df_cat_train = X_train[cat_cols]
df_cat_test = X_test[cat_cols]

cat_imputer = SimpleImputer(strategy='most_frequent')
cat_imputer.fit(df_cat_train)
df_cat_train = pd.DataFrame(cat_imputer.transform(df_cat_train), columns=cat_cols)
df_cat_test = pd.DataFrame(cat_imputer.transform(df_cat_test), columns=cat_cols)

df_num_train = X_train[num_cols]
df_num_test = X_test[num_cols]

IMPUTATION OF MISSING NUMERICAL COLUMNS WITH MEDIAN:

num_imputer = SimpleImputer(strategy='median')
num_imputer.fit(df_num_train[num_cols])

df_num_train = pd.DataFrame(num_imputer.transform(df_num_train), columns=num_cols)
df_num_test = pd.DataFrame(num_imputer.transform(df_num_test), columns=num_cols)

NOW, COMBINING THE IMPUTED CATEGORICAL AND NUMERIC COLUMNS:


# Combine numeric and categorical in train
X_train = pd.concat([df_num_train, df_cat_train], axis = 1)

# Combine numeric and categorical in test
X_test = pd.concat([df_num_test, df_cat_test], axis = 1)

STANDARDISING THE NUMERICAL ATTRIBUTES:

IMAGE SOURCE: https://giphy.com/

​​Since the method we are employing makes assumptions about the various forms of distribution, such as linear and logistic regression, standardization is a highly helpful strategy that aids us when our data has diverse scales.

When a regression model uses variables that are expressed as polynomials or interactions, data scientists often standardize the data for that model. Due to the terms’ significant importance and ability to reveal the connection between the response and predictor factors, they can also result in extremely high levels of multicollinearity.


scaler = StandardScaler()
scaler.fit(X_train[num_cols])
X_train_std = scaler.transform(X_train[num_cols])
X_test_std = scaler.transform(X_test[num_cols])
print(X_train_std.shape)
print(X_test_std.shape)

ONEHOTENCODER: CONVERTING CATEGORICAL ATTRIBUTES TO NUMERIC ATTRIBUTES:

WHY?

All input and output variables for machine learning models must be numeric. This means that in order to fit and assess a model, categorical data must first be encoded to numbers in your data.

IMAGE SOURCE: https://giphy.com/

enc = OneHotEncoder(drop = 'first')
enc.fit(X_train[cat_cols])
X_train_ohe=enc.transform(X_train[cat_cols]).toarray()
X_test_ohe=enc.transform(X_test[cat_cols]).toarray()

CONCATENATE ATTRIBUTE:

Standardised numerical attributes and categorical attributes with one-hot encoding.

X_train_con = np.concatenate([X_train_std, X_train_ohe], axis=1)
X_test_con = np.concatenate([X_test_std, X_test_ohe], axis=1)
print(X_train_con.shape)
print(X_test_con.shape)

STEP6: FINALLY BUILDING MODEL SUING LINEAR SVM:

CREATING A SVC CLASSIFIER USING A LINEAR KERNEL:

linear_svm = SVC(kernel='linear', C=1)
#Training the classifier
linear_svm.fit(X=X_train, y= y_train)
#Predicting the results
train_predictions = linear_svm.predict(X_train)
test_predictions = linear_svm.predict(X_test)

ERROR MATRIX:

An evaluation procedure that aids in determining and forecasting the viability of a classification model is known as a confusion matrix, also known as an error matrix. You can observe the many prediction mistakes you could make by using confusion matrices.

IMAGE SOURCE: https://giphy.com/
#Defining the error matrix
def evaluate_model(act, pred):
print("Confusion Matrix \n", confusion_matrix(act, pred))
print("Accuracy : ", accuracy_score(act, pred))
print("Recall : ", recall_score(act, pred))
print("Precision: ", precision_score(act, pred))
print("F1_score : ", f1_score(act, pred))
### Train data accuracy
evaluate_model(y_train, train_predictions)

### Test data accuracy
evaluate_model(y_test, test_predictions)

As much as I liked writing for you guys, I hope you enjoyed implementing and learning from this case study as well. If you have any questions or need assistance with the dataset source or GitHub gist (if you are having trouble with parts of the code), please get in touch; we would be more than happy to assist.😁❤️

IMAGE SOURCE: https://giphy.com/

CONTINUE TO FORESEE, LEARN, AND EXPLORE! ❤️

FOLLOW US FOR THE SAME FUN TO LEARN DATA SCIENCE BLOGS AND ARTICLES:💙

LINKEDIN: https://www.linkedin.com/company/dsmcs/

INSTAGRAM: https://www.instagram.com/datasciencemeetscybersecurity/?hl=en

GITHUB: https://github.com/Vidhi1290

TWITTER: https://twitter.com/VidhiWaghela

MEDIUM: https://medium.com/@datasciencemeetscybersecurity-

WEBSITE: https://www.datasciencemeetscybersecurity.com/

– TEAM DATA SCIENCE MEETS CYBER SECURITY ❤️💙


SUPPORT VECTOR MACHINES : PREDICTING FUTURE – CASE STUDY was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->