Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Short Introduction to Generative Adversarial Networks (GANs)
Latest

Short Introduction to Generative Adversarial Networks (GANs)

Last Updated on August 27, 2021 by Editorial Team

Author(s): Mugunthan

Machine Learning

General Adversarial Network (GAN) is a generative modeling approach using deep learning neural networks such asΒ CNN.

There are two types of modeling techniques, i) Discriminative modeling and ii) generative modeling. Discriminative models are the typical ones that are used for classification in machine learning. They take input as features X (image, for image classification) and predict the output Y(probability of the image) for the given features. On the other hand, generative models output features X (image) given a randomΒ value.

Some of the generative models are Latent Dirichlet Allocation, or LDA, and the Gaussian Mixture Model, or GMM. Some Deep Learning generative models are Variational Autoencoders or VAE, General Adversarial Network, orΒ GAN.

Simple representation of GAN’sΒ work

How do GAN’sΒ work?

GAN consists of two blocks, a generator, and a discriminator. The discriminator is a trained network that will be able to differentiate between real and fake images, While the generator is not trained. Using the random value(s), the generator will generate an image which then is fed to the discriminator. Then discriminator will give how fake/real is the generated image. This helps the generator to fine-tune the subsequent image generation, finally producing indistinguishable fakeΒ images.

By its name, you can see the generator and discriminator oppose each other for the generation of the newΒ image.

Here are Images created by a GAN created byΒ NVIDIA

These images are faces that don’t belong to any person, but are generated by GANΒ !.

Hope this blog at least clarifies what GANΒ is?


Short Introduction to Generative Adversarial Networks (GANs) was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓