Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Keeping up with ML Research: A Tool to Navigate the ML Innovation Maze
Latest   Machine Learning

Keeping up with ML Research: A Tool to Navigate the ML Innovation Maze

Author(s): Alessandro Amenta

Originally published on Towards AI.

Image generated with DALL-E 3

In the fast-paced world of Machine Learning (ML) research, keeping up with the latest findings is crucial and exciting, but let’s be honest — it’s also a challenge. With a constant stream of advancements and new publications, it’s tough to pinpoint the research that matters to you.

The typical conference website is filled with fascinating new papers, yet their interfaces leave much to be desired — they’re often clunky and make it hard to zero in on the content that’s relevant and interesting to you. This can make the search for new papers time-intensive and a bit frustrating.

Enter ML Conference Paper Explorer: your sidekick in navigating the ML paper maze with ease. It’s all about getting you to the papers you need without the hassle.

Why We Built This

The challenge is real: each ML conference presents a crazy number of papers, usually in the order of thousands, often listed one after the other without a practical way to filter through the noise. Often there is no search at all, it’s literally just a list. In an age where ML is reshaping the future, why is accessing its knowledge still so impractical? Official conference websites, while informative, aren’t exactly user-friendly or conducive to discovery.

So, that’s why we built this: a streamlined platform that not only aggregates and organizes papers from all the major ML conferences but also makes finding the papers you are interested in a lot more straightforward.

What the Project Does and Architecture

Overall here’s what the project does: it aggregates all the accepted papers from the latest ML conferences into one database. We use custom built scrapers to collect the papers and turn them into text embeddings to make them searchable and visualize the data.

  • Scraping & Fetching: We’ve developed specialized scrapers and fetchers for each conference, for instance, the Openacess scraper and Arxiv fetcher work together to reel in all the accepted papers from ICCV.
  • Data Storage: Important paper details — title, abstract, authors, URL, year, and conference name — are saved in a JSON file in the repo (papers_repo.json), ready for quick keyword searches and filtering.
  • Embeddings: Using OpenAI’s text embeddings (ada 002), we transform paper titles and abstracts into embeddings, which we store in a vector DB (Pinecone). This enables semantic or unified search.
  • Interactive Visualization: Using t-SNE and Bokeh, we plot all of the embeddings in our vectorDB, so that the user can visually navigate through research clusters.

A Glimpse into the Code

Our scrapers are the backbone of the data collection process. Here’s an insight into their architecture:

class Scraper:
def get_publications(self, url):
raise NotImplementedError("Subclasses must implement this method!")

class OpenAccessScraper(Scraper):
def __init__(self, fetcher, num_papers=None):
self.fetcher = fetcher
self.num_papers = num_papers
logger.info("OpenAccessScraper instance created with fetcher %s and num_papers_to_scrape %s", fetcher, num_papers)

def get_publications(self, url, num_papers=None):
logger.info("Fetching publications from URL: %s", url)
try:
response = requests.get(url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error("Request failed for URL %s: %s", url, e)
return []

soup = BeautifulSoup(response.content, 'html.parser')
papers = []

arxiv_anchors = [anchor for anchor in soup.find_all('a') if 'arXiv' in anchor.text]
logger.debug("Found %d arXiv anchors", len(arxiv_anchors))

# If num_papers_to_scrape is defined, limit the number of papers
if self.num_papers:
arxiv_anchors = arxiv_anchors[:self.num_papers]
logger.info("Limiting the number of papers to scrape to %d", self.num_papers)

for anchor in arxiv_anchors:
title = anchor.find_previous('dt').text.strip()
link = anchor['href']
arxiv_id = link.split('/')[-1]

abstract, authors = self.fetcher.fetch(arxiv_id)
papers.append({'title': title, 'url': link, 'abstract': abstract, 'authors': authors})

logger.info("Successfully fetched %d papers", len(papers))
return papers

-----------------------------------------------------------------------------

class PublicationFetcher(metaclass=ABCMeta):
'''Abstract base class for publication fetchers.'''
@abstractmethod
def fetch(self, publication_id):
'''Fetches the publication content from the source and returns it.'''
raise NotImplementedError("Subclasses must implement this method!")

class ArxivFetcher(PublicationFetcher):
def fetch(self, arxiv_id):
logger.debug(f"Attempting to fetch publication {arxiv_id} from arXiv")
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
}

# Implementing retries with exponential backoff
max_retries = 5
retry_delay = 1 # Start with 1 second delay
for attempt in range(max_retries):
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status() # Check for HTTP request errors
logger.debug("Successfully fetched the data on attempt #%d", attempt + 1)
break # Success, exit retry loop
except requests.exceptions.RequestException as e:
logger.warning("Attempt #%d failed with error: %s. Retrying in %d seconds...", attempt + 1, e, retry_delay)
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
# Failed all retries
logger.error("Failed to fetch publication %s after %d attempts.", arxiv_id, max_retries)
return None, None

soup = BeautifulSoup(response.content, 'xml')
entry = soup.find('entry')
abstract = entry.find('summary').text.strip()
authors = [author.find('name').text for author in entry.find_all('author')]

logger.info("Successfully fetched publication %s from arXiv", arxiv_id)
return abstract, authors

Current Progress and Future Plans

This is just the start — version 0 of our project. We’ve already brought together over 10,000 papers from six key conferences. And this is only the beginning; we’re continuously adding and refining features. There’s plenty of room for improvement, and your insights and patience are invaluable to us during this phase of active development.

Image from the author.

You can give the current version a spin here, or dive into the codebase. We update regularly, so check back often to see the latest updates!

Looking Ahead

Turning papers into embeddings does more than make them easier to find — it helps us spot the big picture. Which research topics are on the rise? What’s the next big thing in ML? Our platform is built to do more than just find papers quickly. It’s about giving you a clearer view of where ML research is heading. Check back with us every month to see new updates and insights we’ve dug up!

Here’s a quick look at app.py, where we bring it all together with a simple Streamlit UI:

import os
import json
import pandas as pd
import streamlit as st
from dotenv import load_dotenv
import streamlit.components.v1 as components

from bokeh.plotting import figure
from bokeh.models import HoverTool, ColumnDataSource
from bokeh.resources import CDN
from bokeh.embed import file_html

from store import EmbeddingStorage

# Load environment variables
load_dotenv()

# Initialize embedding storage with API keys and index name
embedding_storage = EmbeddingStorage(
pinecone_api_key=os.getenv("PINECONE_API_KEY"),
openai_api_key=os.getenv("OPENAI_API_KEY"),
pinecone_index_name="ml-conferences"
)

# Configure the page
st.set_page_config(page_title="ML Conference Papers Explorer U+1F52D", layout="wide")

# Cache and read publications from a JSON file
@st.cache_data
def read_parsed_publications(filepath):
"""Read and parse publication data from a JSON file."""
try:
with open(filepath, 'r') as f:
data = json.load(f)
# Format authors as a comma-separated string
for item in data:
if isinstance(item.get('authors'), list):
item['authors'] = ', '.join(item['authors'])
return data
except FileNotFoundError:
st.error("Publication file not found. Please check the file path.")
return []

# Filter publications based on user query and selections
def filter_publications(publications, query, year, conference):
"""Filter publications by title, authors, year, and conference."""
filtered = []
for pub in publications:
if query.lower() in pub['title'].lower() or query.lower() in pub['authors'].lower():
if year == 'All' or pub['conference_year'] == year:
if conference == 'All' or pub['conference_name'] == conference:
filtered.append(pub)
return filtered

# Perform a unified search combining filters and semantic search
def unified_search(publications, query, year, conference, top_k=5):
"""Combine semantic and filter-based search to find relevant papers."""
filtered = filter_publications(publications, "", year, conference)
if query: # Use semantic search if there's a query
semantic_results = embedding_storage.semantic_search(query, top_k=top_k)
semantic_ids = [result['id'] for result in semantic_results['matches']]
filtered = [pub for pub in filtered if pub['title'] in semantic_ids]
return filtered

# Define file paths and load publications
PUBLICATIONS_FILE = 'papers_repo.json'
existing_papers = read_parsed_publications(PUBLICATIONS_FILE)

# Setup sidebar filters for user selection
st.sidebar.header('Filters U+1F50D')
selected_year = st.sidebar.selectbox('Year', ['All'] + sorted({paper['conference_year'] for paper in existing_papers}, reverse=True))
selected_conference = st.sidebar.selectbox('Conference', ['All'] + sorted({paper['conference_name'] for paper in existing_papers}))

# Main search interface
search_query = st.text_input("Enter keywords, topics, or author names to find relevant papers:", "")
filtered_papers = unified_search(existing_papers, search_query, selected_year, selected_conference, top_k=10)

# Display search results
if filtered_papers:
df = pd.DataFrame(filtered_papers)
st.write(f"Found {len(filtered_papers)} matching papers U+1F50E", df[['title', 'authors', 'url', 'conference_name', 'conference_year']])
else:
st.write("No matching papers found. Try adjusting your search criteria.")

# t-SNE plot visualization
@st.cache_data
def read_tsne_data(filepath):
"""Read t-SNE data from a file."""
with open(filepath, 'r') as f:
return json.load(f)

tsne_data = read_tsne_data('tsne_results.json')

# Assign colors to conferences for visualization
conference_colors = {
'ICLR': 'blue',
'ICCV': 'green',
'NeurIPS': 'red',
'CVPR': 'orange',
'EMNLP': 'purple',
'WACV': 'brown'
}

# Prepare data for plotting
source = ColumnDataSource({
'x': [item['x'] for item in tsne_data],
'y': [item['y'] for item in tsne_data],
'title': [item['id'] for item in tsne_data],
'conference_name': [item['conference_name'] for item in tsne_data],
'color': [conference_colors.get(item['conference_name'], 'grey') for item in tsne_data],
})

# Setup the plot
p = figure(title='ML Conference Papers Visualization', x_axis_label='Dimension 1', y_axis_label='Dimension 2', width=800, tools="pan,wheel_zoom,reset,save")
hover = HoverTool(tooltips=[('Title', '@title'), ('Conference', '@conference_name')])
p.add_tools(hover)
p.circle('x', 'y', size=5, source=source, alpha=0.6, color='color')

# Render the t-SNE plot
html = file_html(p, CDN, "t-SNE Plot")
components.html(html, height=800)

# Add a footer
st.markdown("---")
st.markdown("U+1F680 Made by Alessandro Amenta and Cesar Romero, with Python and lots of U+2764️ for the ML community.")

Here’s what the Streamlit frontend offers: you can apply filters and do semantic searches across all the papers.

Image from the Author.

And here’s how we display the data: we visualize research paper clusters using t-SNE, making it easy to see how different papers from different conferences are related.

Image from the Author.

Wrapping up and improvements

We’re nearly ready to open up for contributions and we’d welcome your ideas or feedback even before that. If you’ve got suggestions or improvements, let me know. Help make this tool better for everyone in the ML community. Keep an eye out on the Github repo— we’ll be opening up for contributions in a couple of weeks! U+1F680U+1F50D

Should you find this project useful, consider expressing your appreciation with 50 claps U+1F44F and giving the repo a star U+1F31F— your support means a ton.

Thanks for following along and happy coding! 🙂

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->