Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Geometric Transformations on Images
Latest   Machine Learning

Geometric Transformations on Images

Last Updated on July 24, 2023 by Editorial Team

Author(s): Akula Hemanth Kumar

Originally published on Towards AI.

Making computer vision easy with Monk, low code Deep Learning tool and a unified wrapper for Computer Vision

Table of contents

  1. Scaling
  2. Translation
  3. Rotation
  4. Affine Transformation
  5. Perspective Transformation

Scaling

  • Image scaling refers to the resizing of a digital image.
  • The magnification of digital material is known as upscaling.
  • The downsizing is known as downscaling.
  • Ideal Scenario- Lossless transformation.
  • Image resolution- height(in pixels) , *width(in pixels)

Image resizing using numpy

import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread("imgs/chapter4/tessellate.jpg", -1)
print("Input image shape - {}".format(img.shape))
plt.imshow(img[:,:,::-1])
plt.show()

Output

Input image shape - (240, 320, 3)

Downscaling width

height, width, channels = img.shape

# create blank image of half the width
resized_img_width = np.zeros((height, width//2, channels), dtype=np.int32)
for r in range(height):
for c in range(width//2):
resized_img_width[r][c] += (img[r][2*c])

print("Width resized image shape - {}".format(resized_img_width.shape))
plt.imshow(resized_img_width[:,:,::-1])
plt.show()

Output

Width resized image shape - (240, 160, 3)

Downscaling image to half its width and height

resized_img = np.zeros((height//2, width//2, channels), dtype=np.int32)for r in range(height//2):
for c in range(width//2):
resized_img[r][c] += (resized_img_width[r*2][c])
print("Complete resized image shape - {}".format(resized_img.shape))
plt.imshow(resized_img[:,:,::-1])
plt.show()

Output

Complete resized image shape - (120, 160, 3)

Upscaling height

half_upsclaled_img = np.zeros((height, width//2, channels), dtype=np.int32)half_upsclaled_img[0:height:2, :, :] = resized_img[:, :, :]
half_upsclaled_img[1:height:2, :, :] = resized_img[:, :, :]
print("Height upscaled image shape - {}".format(half_upsclaled_img.shape))
plt.imshow(half_upsclaled_img[:,:,::-1])
plt.show()

Output

Height upscaled image shape - (240, 160, 3)

Upscaling width

upsclaled_img = np.zeros((height, width, channels), dtype=np.int32)# Expand rows by replicating every consecutive row
upsclaled_img[:, 0:width:2, :] = half_upsclaled_img[:, :, :]
upsclaled_img[:, 1:width:2, :] = half_upsclaled_img[:, :, :]
print("Fully upscaled image shape - {}".format(upsclaled_img.shape))
upscaled_img_manual = upsclaled_img
plt.imshow(upsclaled_img[:,:,::-1])
plt.show()

Output

Fully upscaled image shape - (240, 320, 3)

Comparing original and upscaled

f = plt.figure(figsize=(15,15))
f.add_subplot(1, 2, 1).set_title('Original Image')
plt.imshow(img[:, :, ::-1])
f.add_subplot(1, 2, 2).set_title('Upscaled image post downscaling')
plt.imshow(upsclaled_img[:, :, ::-1])
plt.show()

Note: There is a lot of information loss in this sort of image resizing.

Image resizing using OpenCV

  • Downscaling shape by using cv2.resize().
  • Upscaling shape by using cv2.resize().

Downscaling image to half its width and height

import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread("imgs/chapter4/tessellate.jpg", -1)
height, width, channels = img.shape

# create blank image of half the width
resized_img = cv2.resize(img, (width//2, height//2))
print("Downscaled image shape - {}".format(resized_img.shape))
plt.imshow(resized_img[:,:,::-1])
plt.show()

Upscaling image to its original width and height

height, width, channels = img.shape

# create blank image of half the width
upscaled_img = cv2.resize(resized_img, (width, height));
print("Upscaled image shape - {}".format(upscaled_img.shape))
upscaled_img_opencv = upscaled_img
plt.imshow(upscaled_img[:,:,::-1])
plt.show()

Output

Upscaled image shape - (240, 320, 3)

Comparing original, manually upscaled, rescaled using opencv

f = plt.figure(figsize=(15,15))
f.add_subplot(3, 1, 1).set_title('Original Image');
plt.imshow(img[:, :, ::-1])
f.add_subplot(3, 1, 2).set_title('Manually Upscaled post downscaling');
plt.imshow(upscaled_img_manual[:, :, ::-1])
f.add_subplot(3, 1, 3).set_title('Upscaled using opencv post downscaling');
plt.imshow(upscaled_img[:, :, ::-1])
plt.show()

Image resizing using Pillow

Downscaling image to half its width and height

import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
img_p = Image.open("imgs/chapter4/tessellate.jpg")
width, height = img_p.size

# create blank image of half the width
resized_img = img_p.resize((width//2, height//2))
print("Downscaled image shape - {}".format(resized_img.size))
plt.imshow(resized_img);
plt.show()

Output

Downscaled image shape - (160, 120)

Upscaling image to its original width and height

width, height = img_p.size

# create blank image of half the width
upscaled_img = resized_img.resize((width, height))
print("Upscaled image shape - {}".format(upscaled_img.size))
plt.imshow(resized_img)
plt.show()

Output

Upscaled image shape - (320, 240)

Comparing original, manually upscaled, rescaled using opencv

f = plt.figure(figsize=(15,15))
f.add_subplot(2, 2, 1).set_title('Original Image')
plt.imshow(img[:, :, ::-1])
f.add_subplot(2, 2, 2).set_title('Manually Upscaled post downscaling')
plt.imshow(upscaled_img_manual[:, :, ::-1])
f.add_subplot(2, 2, 3).set_title('Upscaled using opencv post downscaling')
plt.imshow(upscaled_img_opencv[:, :, ::-1])
f.add_subplot(2, 2, 4).set_title('Upscaled using PIL post downscaling')
plt.imshow(upscaled_img)
plt.show()

Algorithms for scaling

What is Interpolation

  • Interpolation is a method of constructing new data points within the range of a discrete set of known data points.
  • It is often required to interpolate, i.e estimate the value of that function for an intermediate value of the independent variable.
  • It is also called as curve fitting. Approximating values

OpenCV Interpolations

nearest neighbor interpolation

  • Assign the value nearest to the current pixel.
  • The nearest neighbor is the most basic.
  • It requires the least processing time of all the interpolation algorithms because it only considers one pixel- the closest one to the interpolated point.

Bilinear Interpolation

  • Bilinear interpolation considers the closest 2*2 neighborhood of known pixel values surrounding the unknown pixel.
  • It then takes a weighted average of these 4 pixels to arrive at its final interpolated value.

BiCubic Interpolation

LancZos Interpolation

  • Higher-order interpolation.
  • Works in frequency domain thus hard to visualize.
  • A higher dimension filtering and feature extraction methodology.

Which interpolation to use?

  • cv2.INTER_LINEAR is used by default.
  • cv2.INTER_AREA for shrinking.
  • cv2.INTER_CUBIC again for shrinking, better but slow.
  • cv.INTER_LINEAR for zooming.
  • Other complex ones when the speed of computation is not considered.

OpenCV algorithms

Pillow algorithms

Translation

  • Shifting image by certain pixels in either of the four directions.

Why is it required?

  • For data Augmentation.

Image translation using basic Numpy

import numpy as np 
import cv2
from matplotlib import pyplot as plt
img = cv2.imread("imgs/chapter4/dog.jpg",-1)
plt.imshow(img[:,:,::-1])
plt.show()

Translating to right by 50 pixels

h, w, c = img.shape;
img_new = np.zeros((h, w, c), dtype=np.uint8);

f = plt.figure(figsize=(15,15))
f.add_subplot(3, 1, 1).set_title('Original Image');
plt.imshow(img[:, :, ::-1])
f.add_subplot(3, 1, 2).set_title('New Blank Image');
plt.imshow(img_new[:, :, ::-1])
plt.show()
img_new[:, 50:, :] = img[:, :w-50, :]

plt.imshow(img_new[:,:,::-1])
plt.show()

Translating to left by 50 pixels

h, w, c = img.shape
img_new = np.zeros((h, w, c), dtype=np.uint8)

img_new[:, :w-50, :] = img[:, 50:, :]
plt.imshow(img_new[:,:,::-1])
plt.show()

Translating down by 50 pixels

h, w, c = img.shape
img_new = np.zeros((h, w, c), dtype=np.uint8)

img_new[50:, :, :] = img[:h-50, :, :]
plt.imshow(img_new[:,:,::-1])
plt.show()

Translating up by 50 pixels

h, w, c = img.shape;
img_new = np.zeros((h, w, c), dtype=np.uint8)

img_new[:h-50, :, :] = img[50:, :, :]
plt.imshow(img_new[:,:,::-1])
plt.show()

Rotation

Image rotation using PIL

import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
img_p = Image.open("imgs/chapter4/triangle.jpg")
plt.imshow(img_p)
plt.show()

Clockwise rotation by 30 degrees with pivot as the center

img_p_new = img_p.rotate(-30)
plt.imshow(img_p_new)
plt.show()

Anti-Clockwise rotation by 30 degrees with pivot as the center

img_p_new = img_p.rotate(30)
plt.imshow(img_p_new)
plt.show()

Affine Transformation

  • Transformation involving translation and rotations of images.
  • But the transformation is done in a way that straight lines in the image are never curved.

Affine Transformation using OpenCV

import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread("imgs/chapter4/tessellate.jpg", -1)
plt.imshow(img[:,:,::-1])
plt.show()

Keeping two points static and changing

img = cv2.imread("imgs/chapter4/tessellate.jpg", -1)
rows,cols,ch = img.shape


# Read as x, y
pts1 = np.float32([[50,50],[200,50], [50,200]])
pts2 = np.float32([[80,50],[200,50], [50,200]])


cv2.circle(img,(int(pts1[0][0]),int(pts1[0][1])),5,(0,255,0),-1)
cv2.circle(img,(int(pts1[1][0]),int(pts1[1][1])),5,(0,0,255),-1)
cv2.circle(img,(int(pts1[2][0]),int(pts1[2][1])),5,(255,0,0), -1)
M = cv2.getAffineTransform(pts1,pts2)
dst = cv2.warpAffine(img,M,(cols,rows))

f = plt.figure(figsize=(15,15))
f.add_subplot(1, 2, 1).set_title('Input')
plt.imshow(img[:, :, ::-1])
f.add_subplot(1, 2, 2).set_title('Transformed')
plt.imshow(dst[:, :, ::-1])
plt.show()

Keeping 1 point as hinge

img = cv2.imread("imgs/chapter4/tessellate.jpg", -1)
rows,cols,ch = img.shape

pts1 = np.float32([[50,50],[200,50], [50,200]])
#pts2 = np.float32([[60,50],[190,50], [50,200]])
# Works as translation + shrinking

pts2 = np.float32([[60,50],[200,50], [50,175]])


cv2.circle(img,(int(pts1[0][0]), int(pts1[0][1])), 5, (0,255,0), -1)
cv2.circle(img,(int(pts1[1][0]), int(pts1[1][1])), 5, (0,0,255), -1)
cv2.circle(img,(int(pts1[2][0]), int(pts1[2][1])), 5, (255,0,0), -1)

M = cv2.getAffineTransform(pts1,pts2)

dst = cv2.warpAffine(img,M,(cols,rows))

f = plt.figure(figsize=(15,15))
f.add_subplot(1, 2, 1).set_title('Input')
plt.imshow(img[:, :, ::-1])
f.add_subplot(1, 2, 2).set_title('Transformed')
plt.imshow(dst[:, :, ::-1])
plt.show()

Translating all three points -> translation

img = cv2.imread("imgs/chapter4/tessellate.jpg", -1)
rows,cols,ch = img.shape

pts1 = np.float32([[50,50],[200,50], [50,200]])
pts2 = np.float32([[60,50],[210,50], [60,200]])


cv2.circle(img,(int(pts1[0][0]), int(pts1[0][1])), 5, (0,255,0), -1)
cv2.circle(img,(int(pts1[1][0]), int(pts1[1][1])), 5, (0,0,255), -1)
cv2.circle(img,(int(pts1[2][0]), int(pts1[2][1])), 5, (255,0,0), -1)

M = cv2.getAffineTransform(pts1,pts2)

dst = cv2.warpAffine(img,M,(cols,rows))

f = plt.figure(figsize=(15,15))
f.add_subplot(1, 2, 1).set_title('Input')
plt.imshow(img[:, :, ::-1])
f.add_subplot(1, 2, 2).set_title('Transformed')
plt.imshow(dst[:, :, ::-1])
plt.show()

Perspective Transformation

Perspective transform using OpenCV

import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread("imgs/chapter4/cube.png", 1)
plt.imshow(img[:,:,::-1])
plt.show()

Zooming in from a view

img = cv2.imread("imgs/chapter4/cube.png", 1)
img = cv2.resize(img, (400, 400))
rows,cols,ch = img.shape

# Counter clock wise
pts1 = np.float32([[130,130],[390,75],[360,320],[140, 390]])
pts2 = np.float32([[0,0],[0, 200],[200,200],[200,0]])


# uncomment each and see
cv2.circle(img,(int(pts1[0][0]),int(pts1[0][1])),5,(255,255,255), -1)
cv2.circle(img,(int(pts1[1][0]), int(pts1[1][1])), 5, (255,255,255), -1)
cv2.circle(img,(int(pts1[2][0]), int(pts1[2][1])), 5, (255,255,255), -1)
cv2.circle(img,(int(pts1[3][0]), int(pts1[3][1])), 5, (255,255,255), -1)

M = cv2.getPerspectiveTransform(pts1,pts2)

dst = cv2.warpPerspective(img,M,(cols,rows))

f = plt.figure(figsize=(15,15))
f.add_subplot(1, 2, 1).set_title('Input');
plt.imshow(img[:, :, ::-1])
f.add_subplot(1, 2, 2).set_title('Transformed');
plt.imshow(dst[:, :, ::-1])
plt.show()

You can find the complete jupyter notebook on Github.

If you have any questions, you can reach Abhishek and Akash. Feel free to reach out to them.

I am extremely passionate about computer vision and deep learning in general. I am an open-source contributor to Monk Libraries.

You can also see my other writings at:

Akula Hemanth Kumar – Medium

Read writing from Akula Hemanth Kumar on Medium. Computer vision enthusiast. Every day, Akula Hemanth Kumar and…

medium.com

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->