Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Empowering Your App with Streamlit’s New Connections Feature and Interactive Plotly Maps
Latest   Machine Learning

Empowering Your App with Streamlit’s New Connections Feature and Interactive Plotly Maps

Last Updated on August 7, 2023 by Editorial Team

Author(s): Stavros Theocharis

Originally published on Towards AI.

Aeroa: An app for air quality visualizations

Image created by the author

Introduction

Streamlit recently, and at the time that this article is being written, announced its new feature, st.experimental_connection, and I was very interested in using it and understanding how it works. More details can be found in their official docs.

Image by streamlit

So, what is this new feature, and what can you do with it? Through it, you can create a new connection to a data store or API or return an existing one. You also have plenty of configuration options, such as credentials, secrets, etc., for connections that are taken from various sources, such as any connection-specific configuration files and the app’s secrets.toml files and the kwargs passed to this function. If you ask me, for such things, you could build something alone with Streamlit and your own code (required time), but now Streamlit gives you better abilities with a built-in feature.

Details of the connection class

So, let’s see some more details about the main class that this feature uses. Streamlit gives you the ability to create your own connection class and call it inside your app. There are already some built-in connection classes for SQL and Snowpark in Snowflake. It is very easy to use them, as the example for SQL below:

import streamlit as st
conn = st.experimental_connection("sql")

you can also do more complex stuff, but we will discuss it below in the next specific example.

Build your own Connection class

Streamlit announced its new hackathon in order to build apps that allow you to create your own connection classes. So I decided to participate and create a simple app because of time restrictions. This app will use air quality and some weather data provided by an open API called OpenAQ. It provided several pieces of data for almost every country in the world based on installed sensors in specific areas.

In order to use the above API, we have to create a new connection class. This class will include the new session of the requests library, one query that gets the countries (it needs a small custom-made code), one main query that gets the specific data of the chosen country, and…. that’s all. The below part will be included in a “connection.py” file.

from streamlit.connections import ExperimentalBaseConnection
import requests
import streamlit as st

class OpenAQConnection(ExperimentalBaseConnection[requests.Session]):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._resource = self._connect(**kwargs)

def _connect(self, **kwargs) -> requests.Session:
session = requests.Session()

return session

def cursor(self):
return self._resource

def query_countries(
self, limit=100, page=1, sort="asc", order_by="name", ttl: int = 3600
):
@st.cache_data(ttl=ttl)
def _query_countries(limit, page, sort, order_by):
params = {
"limit": limit,
"page": page,
"sort": sort,
"order_by": order_by,
}
with self._resource as s:
response = s.get("https://api.openaq.org/v2/countries", params=params)
return response.json()

return _query_countries(limit, page, sort, order_by)

def query(
self,
country_id,
limit=1000,
page=1,
offset=0,
sort="desc",
radius=1000,
order_by="lastUpdated",
dumpRaw="false",
ttl: int = 3600,
):
@st.cache_data(ttl=ttl)
def _get_locations_measurements(
country_id, limit, page, offset, sort, radius, order_by, dumpRaw
):
params = {
"limit": limit,
"page": page,
"offset": offset,
"sort": sort,
"radius": radius,
"order_by": order_by,
"dumpRaw": dumpRaw,
}
if country_id is not None:
params["country_id"] = country_id
with self._resource as s:
response = s.get("https://api.openaq.org/v2/locations", params=params)
return response.json()

return _get_locations_measurements(
country_id, limit, page, offset, sort, radius, order_by, dumpRaw
)

Of course, inside this connection, I use @st.cache_data(ttl=ttl) in order to cache the outputs. In order to better understand the args being used for the calling of the different endpoints, please check the corresponding API docs.

Create the visualization function

For the visualization, the plotly library is being used and specifically the Scattermapbox from the go class. (the below function is very big for layout reasons and could be split into more parts, but please forgive me):

import plotly.graph_objects as go

def visualize_variable_on_map(data_dict, variable):
is_day = is_daytime()
mapbox_style = "carto-darkmatter" if not is_day else "open-street-map"

# Initialize lists to store data for multiple locations
latitudes = []
longitudes = []
values = []
display_names = []
last_updated = []

# Loop through the results and extract relevant data for each location
for result in data_dict.get("results", []):
measurements = result.get("parameters", [])
for measurement in measurements:
if measurement["parameter"] == variable:
value = measurement["lastValue"]
display_name = measurement["displayName"]
latitude = result["coordinates"]["latitude"]
longitude = result["coordinates"]["longitude"]
last_updated_value = result["lastUpdated"]

latitudes.append(latitude)
longitudes.append(longitude)
values.append(value)
display_names.append(display_name)
last_updated.append(last_updated_value)

if not latitudes or not longitudes or not values:
print(f"{variable} data not found.")
return create_custom_markdown_card(
f"{variable} data not found for the selected country."
)

# Create the visualization
fig = go.Figure()

marker = [
custom_markers["humidity"]
if variable == "humidity"
else custom_markers["others"]
]

# Add a single scatter mapbox trace with all locations
fig.add_trace(
go.Scattermapbox(
lat=latitudes,
lon=longitudes,
mode="markers+text",
marker=dict(
size=20,
color=values,
colorscale="Viridis", # You can choose other color scales as well
colorbar=dict(title=f"{variable.capitalize()}"),
),
text=[
f"{marker[0]} {display_name}: {values[i]}<br>Last Updated: {last_updated[i]}"
for i, display_name in enumerate(display_names)
],
hoverinfo="text",
)
)

# Update map layout
fig.update_layout(
mapbox=dict(
style=mapbox_style, # Choose the desired map style
zoom=5, # Adjust the initial zoom level as needed
center=dict(
lat=sum(latitudes) / len(latitudes),
lon=sum(longitudes) / len(longitudes),
),
),
margin=dict(l=0, r=0, t=0, b=0),
)
create_custom_markdown_card(information)
st.plotly_chart(fig, use_container_width=True)

Create the app

The below code is included inside our “app.py” file:

import streamlit as st
from connection import OpenAQConnection
from utils import * # a customade utils part with support functions

st.set_page_config(page_title="OpenAQ Connection", layout="wide")
conn = st.experimental_connection("openaq", type=OpenAQConnection)

# in case you have a readme toml file
readme = load_config("config_readme.toml")


# Info
st.title("Air quality data")
with st.expander("What is this app?", expanded=False):
st.write(readme["app"]["app_intro"])
st.write("")
st.write("")
st.sidebar.image(load_image("logo.png"), use_column_width=True)
display_links(readme["links"]["repo"], readme["links"]["other_link"])

with st.spinner("Loading the available countries..."):
# Countries exist in first 2 pages
countries = []
for page in [1, 2]:
try:
countries_request = conn.query_countries(page=page)["results"]
countries = countries + countries_request
except Exception:
countries_error = True

transformed_countries = {
country["name"]: {
"code": country["code"],
"parameters": country["parameters"],
"locations": country["locations"],
"lastUpdated": country["lastUpdated"],
}
for country in countries
}

# Add a global for default when the app is initialised
transformed_countries["Global"] = {
"code": None,
"parameters": general_parameters,
"locations": None,
"lastUpdated": None,
}

# Parameters
st.sidebar.title("Selections")
selected_country = st.sidebar.selectbox(
"Select the desired country",
transformed_countries,
placeholder="Country",
index=len(transformed_countries) - 1, # Gets the last one "Global"
help=readme["tooltips"]["country"],
)

selected_viariable = st.sidebar.selectbox(
"Select the desired variable",
transformed_countries[selected_country]["parameters"],
placeholder="Variable",
index=1,
help=readme["tooltips"]["variable"],
)

radius = st.sidebar.slider(
"Select a radius",
min_value=100,
max_value=25000,
step=100,
value=1000,
help=readme["tooltips"]["radius"],
)

total_locations = transformed_countries[selected_country]["locations"]
last_time = transformed_countries[selected_country]["lastUpdated"]
information = f"The selected country is {selected_country}. The total found locations are {total_locations} with last updates at {last_time}."

code = transformed_countries[selected_country]["code"]
locations_response = conn.query(code, radius)
st.title("Map")
visualize_variable_on_map(locations_response, selected_viariable)

So after running our app “streamlit run app.py” we have our app running.

I called the app “AEROA,” and you can find it deployed in the streamlit community cloud here. You can also find the source code on Github and play with it according to your own preferences.

Conclusion

In this quick tutorial, we showcased the new st.experimental_connection feature from streamlit and used it to establish a connection with an open API that provides data for air quality data. In addition to this, we also developed a nice new app that displays the results in a plotly map.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->