Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

EHR-Safe by Google: A High-Fidelity and Privacy-Preserving Synthetic Data Framework: Page by Page Research Review
Latest   Machine Learning

EHR-Safe by Google: A High-Fidelity and Privacy-Preserving Synthetic Data Framework: Page by Page Research Review

Last Updated on July 17, 2023 by Editorial Team

Author(s): Dr. Mandar Karhade, MD. PhD.

Originally published on Towards AI.

EHR-Safe: Generating High-Fidelity and Privacy-Preserving Synthetic Electronic Health Records

https://doi.org/10.21203/rs.3.rs-2347130/v1

Privacy concerns often arise as the key bottleneck for the sharing of data between consumers and data holders, particularly for sensitive data such as Electronic Health Records (EHR). This impedes the application of data analytics and ML-based innovations with tremendous potential. One promising approach to avoid such privacy concerns is to instead use synthetic data. We propose a novel generative modeling framework, EHR-Safe, for generating highly realistic and privacy-preserving synthetic EHR data. EHR-Safe is based on a two-stage model that consists of sequential encoder-decoder networks and generative adversarial networks. Our innovations focus on the key challenging aspects of real-world EHR… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓