Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

CVML Annotation — What it is and How to Convert it?
Computer Vision   Deep Learning

CVML Annotation — What it is and How to Convert it?

Last Updated on September 18, 2020 by Editorial Team

Author(s): Rohit Verma

Computer Vision, Deep Learning

CVML Annotation — What it is and How to Convert it?

This article is about CMVL annotation format, and how they can be converted to other annotation formats.

Photo by Lenin Estrada on Unsplash

In January of 2004, a research paper named CVML — An XML-based Computer Vision Markup Language was published by Thor List and Robert B. Fisher. Introducing a new XML based annotation format named CVML.

What is an annotation in computer vision?

Annotation is the labeling of the image dataset so that it can be used for training the model. Labeling the images correctly is very important in computer vision tasks as the model will use these annotations for learning and wrong labeling will make the model less accurate, Garbage IN Garbage OUT.

If you are reading this article, then there is a chance that you have encountered CVML somewhere. CVML is not a popular format nowadays, in the era of COCO and VOC, it seems to have lost. (You read about COCO and VOC here).

What is CVML?

CVML was one of the first attempts to create a common annotation format that would enable researchers from around the world to work together. Its creators describe it as

With the introduction of a common data interface specifically designed for Computer Vision one would enable compatible projects to work together more easily, if not as a unit then as modules in a larger setting. The unique abilities of one group would be accessible to others without giving away any secrets. We have created a language that is easily combined with existing code, and a library that people can use if they wish which runs on all major platforms.

This interface is simple enough so nobody would have to spend too long implementing it, versatile enough to encompass many of the possible needs of functionality, extendible so each group can add their own additional information sources and lastly is partially parse-able. This means that there might be auxiliary information in the data, which can safely be ignored if not understood or expected.

CVML format

Being an XML format every project can have its own version of CVML format. The below-given conversion code is according to the following format:

<dataset>
<frame number="772" sec="187" ms="717">
<objectlist>
<object id="0">
<orientation>90</orientation>
<box h="15" w="6" xc="501" yc="100"/>
<appearance>appear</appearance>
<hypothesislist>
<hypothesis evaluation="1.0" id="1" prev="1.0">
<type evaluation="1.0">Traffic Light</type>
<subtype evaluation="1.0">go</subtype>
</hypothesis>
</hypothesislist>
</object>
</objectlist>
<grouplist></grouplist>
</frame>
</dataset.

From the above format, we would be requiring <box h="15" w="6" xc=”501” yc="100"/> for the bounding boxes. “h” is the height, “w” is the width, and “xc” and “yc” are the coordinates of the center of the bounding box in x and y respectively.
And<subtype evaluation="1.0">go</subtype> is for the label. So in the below-given conversion code, we will take h,w,xc,yc and subtype and convert it into xmin, ymin, xmax, ymax, and label. xmin and ymin is the top left corner and xmax and ymax is bottom right corner of the bounding box.

Converting CVML to CSV file

Converting CVML to .csv file will make it easy for conversion into any popular format like COCO or VOC.

Step 1: Importing necessary libraries.

import os
import sys
import numpy as np
import pandas as pd
import xmltodict
import json
from tqdm.notebook import tqdm
import collections

Step 2: Loading the annotation files

img_dir = <image directory>;
annoFile=<annotation file>;
f = open(annoFile, 'r');
my_xml = f.read();
anno = dict(dict(xmltodict.parse(my_xml))["dataset"])

Step 3: Go to each file and find the bounding box details and write it in the pandas Dataframe.

combined=[]
count=0;
for frame in tqdm(anno['frame']):
fname=file_content[count].strip()
count+=1
label_str = "";
width=640
height=480
if(type(frame["objectlist"]) ==collections.OrderedDict):
if(type(frame["objectlist"]['object']) == list):
for j,i in enumerate(frame['objectlist']['object']):
x1=max(int(i['box']['@xc'])-int(i['box']['@w'])/2,0)
y1=max(int(i['box']['@yc'])-int(i['box']['@h'])/2,0)
x2=min(int(i['box']['@xc'])+int(i['box']['@w'])/2,width)
y2=min(int(i['box']['@yc'])+int(i['box']['@h'])/2,height)
label=i['hypothesislist']['hypothesis']['subtype']['#text']
label_str+=str(x1)+" "+str(y1)+" "+str(x2)+" "+str(y2)+" "+label+" "
else:
x1=max(0,int(frame["objectlist"]['object']['box']['@xc'])-int(frame["objectlist"]['object']['box']['@w'])/2)
y1=max(0,int(frame["objectlist"]['object']['box']['@yc'])-int(frame["objectlist"]['object']['box']['@h'])/2)
x2=min(width,int(frame["objectlist"]['object']['box']['@xc'])+int(frame["objectlist"]['object']['box']['@w'])/2)
y2=min(height,int(frame["objectlist"]['object']['box']['@yc'])+int(frame["objectlist"]['object']['box']['@h'])/2)
label=frame["objectlist"]['object']['hypothesislist']['hypothesis']['subtype']['#text']
label_str += str(x1)+" "+str(y1)+" "+str(x2)+" "+str(y2)+" " + label

combined.append([fname,label_str.strip()])

Step 4: Convert the Dataframe into the CSV file.

df = pd.DataFrame(combined, columns = ['ID', 'Label']);
df.to_csv("train_labels.csv", index=False);

After converting it to a CSV file you can easily convert it to other formats.

Converting CSV file to COCO

Step 1: Importing libraries

import os
import numpy as np
import cv2
import dicttoxml
import xml.etree.ElementTree as ET
from xml.dom.minidom import parseString
from tqdm import tqdm
import shutil
import json
import pandas as pd

Step 2: Loading the CSV file and setting file directories.

root = "./";
img_dir = <image directory>;
anno_file = "train_labels.csv";
dataset_path = root;
images_folder = root + "/" + img_dir;
annotations_path = root + "/annotations/";
if not os.path.isdir(annotations_path):
os.mkdir(annotations_path)

input_images_folder = images_folder;
input_annotations_path = root + "/" + anno_file;
output_dataset_path = root;
output_image_folder = input_images_folder;
output_annotation_folder = annotations_path;
tmp = img_dir.replace("/", "");
output_annotation_file = output_annotation_folder + "/instances_" + tmp + ".json";
output_classes_file = output_annotation_folder + "/classes.txt";
if not os.path.isdir(output_annotation_folder):
os.mkdir(output_annotation_folder);
df = pd.read_csv(input_annotations_path);
columns = df.columns
delimiter = " ";

Step 3: Creating classes.txt files that will contain all the labels class that was present in the annotation file.

list_dict = [];
anno = [];
for i in range(len(df)):
img_name = df[columns[0]][i];
labels = df[columns[1]][i];
tmp = str(labels).split(delimiter);
for j in range(len(tmp)//5):
label = tmp[j*5+4];
if(label not in anno):
anno.append(label);
anno = sorted(anno)

for i in tqdm(range(len(anno))):
tmp = {};
tmp["supercategory"] = "master";
tmp["id"] = i;
tmp["name"] = anno[i];
list_dict.append(tmp);
anno_f = open(output_classes_file, 'w');
for i in range(len(anno)):
anno_f.write(anno[i] + "\n");
anno_f.close();

Step 4: Finally converting the CSV file to COCO format.

coco_data = {};
coco_data["type"] = "instances";
coco_data["images"] = [];
coco_data["annotations"] = [];
coco_data["categories"] = list_dict;
image_id = 0;
annotation_id = 0;
for i in tqdm(range(len(df))):
img_name = df[columns[0]][i];
labels = df[columns[1]][i];
tmp = str(labels).split(delimiter);
image_in_path = input_images_folder + "/" + img_name;
img = cv2.imread(image_in_path, 1);
h, w, c = img.shape;
images_tmp = {};
images_tmp["file_name"] = img_name;
images_tmp["height"] = h;
images_tmp["width"] = w;
images_tmp["id"] = image_id;
coco_data["images"].append(images_tmp);
for j in range(len(tmp)//5):
x1 = float(tmp[j*5+0]);
y1 = float(tmp[j*5+1]);
x2 = float(tmp[j*5+2]);
y2 = float(tmp[j*5+3]);
label = tmp[j*5+4];
annotations_tmp = {};
annotations_tmp["id"] = annotation_id;
annotation_id += 1;
annotations_tmp["image_id"] = image_id;
annotations_tmp["segmentation"] = [];
annotations_tmp["ignore"] = 0;
annotations_tmp["area"] = (x2-x1)*(y2-y1);
annotations_tmp["iscrowd"] = 0;
annotations_tmp["bbox"] = [x1, y1, x2-x1, y2-y1];
annotations_tmp["category_id"] = anno.index(label);
coco_data["annotations"].append(annotations_tmp)
image_id += 1;
outfile =  open(output_annotation_file, 'w');
json_str = json.dumps(coco_data, indent=4);
outfile.write(json_str);
outfile.close();

So that’s all I have in this blog. I hope this increases your understanding of CVML. For more details check out this research paper.

Also a huge thanks to Abhisingh for all the help.

Thank you for reading.

Hi, I am Rohit. I am a BTech. final year student from India. I have knowledge of machine learning and deep learning. I am interested to work in the field of AI and ML. I am working as a computer vision intern at Tessellate Imaging. Connect with me on LinkedIn.


CVML Annotation — What it is and How to Convert it? was originally published in Towards AI — Multidisciplinary Science Journal on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->