Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

PyTorch vs PyTorch Lightning: A Practical Exploration
Data Science   Latest   Machine Learning

PyTorch vs PyTorch Lightning: A Practical Exploration

Last Updated on January 3, 2025 by Editorial Team

Author(s): Talha Nazar

Originally published on Towards AI.

Comparison Between PyTorch and PyTorch Lightning (Image by Author)

PyTorch has become a household name among developers and researchers in the ever-evolving world of deep learning. Its dynamic computational graph, flexibility, and extensive community support have made it a go-to framework for building everything from simple neural networks to complex state-of-the-art models. However, with flexibility comes the responsibility of writing a fair amount of boilerplate code — especially regarding training loops, logging, and distributed learning. That’s where PyTorch Lightning steps in, offering a structured, high-level interface that automates many of the lower-level details.

In this story, we’ll deeply dive into what differentiates plain PyTorch from PyTorch Lightning, highlight their key distinctions with hands-on examples, and examine how each approach might fit into your workflow. We’ll also include a flowchart comparing training pipelines, relevant citations for deeper study, and links to helpful videos, so you can embark on a guided exploration of these two frameworks.

Table of Contents

  1. Background: PyTorch Essentials
  2. Introducing PyTorch Lightning
  3. One-to-One Differences
  4. Hands-On Examples
  5. Flowchart Comparison
  6. Best Practices & Use Cases
  7. Helpful Resources & Citations
  8. Conclusion

1. Background: PyTorch Essentials

Before we compare PyTorch to PyTorch Lightning, it’s important to recap what makes PyTorch so appealing in the first place.

1.1 Dynamic Computation Graph

PyTorch uses a dynamic computational graph, which means the graph is generated on the fly, allowing developers to write Python code that feels more natural and more intuitive for debugging. In older frameworks (like the early days of TensorFlow), you had to define a static graph before running it, which introduced complexity when working with dynamic inputs or specialized architectures.

1.2 Pythonic API

PyTorch is deeply integrated with Python. This synergy makes it particularly developer-friendly, as you can leverage native Python features and debugging tools. The code flows seamlessly, making experimentation straightforward.

1.3 Granular Control

With great power comes great responsibility. In vanilla PyTorch, you’re in charge of writing the training loop, updating weights (optimizers, schedulers), moving data to/from devices, and handling any special logging or callbacks yourself. This is ideal if you want fine-grained control or are building highly specialized research models.

2. Introducing PyTorch Lightning

Developed to reduce boilerplate and foster best practices, PyTorch Lightning is often described as a lightweight wrapper on top of PyTorch. Instead of reinventing the wheel, it focuses on streamlining the training process:

  1. Removes Boilerplate: You no longer have to write your training loop from scratch; PyTorch Lightning Trainer handles it.
  2. Enforces Structure: Encourages a modular approach to building neural networks. You define a LightningModule that contains your model architecture, your training_step, validation_step, and other steps if needed.
  3. Built-in Features: Built-in logging (via Lightning’s loggers), distributed training support, checkpointing, early stopping, and more.

Rather than limiting you, PyTorch Lightning preserves PyTorch's underlying flexibility. If you need to dive deeper, you can override methods or incorporate custom logic without losing the benefits of the framework’s structure.

3. One-to-One Differences

3.1 Training Loops & Boilerplate

PyTorch:

  • You manually write your training, validation, and testing loops.
  • You must keep track of batch iterations, forward passes, backpropagation, optimizers, and logging if needed.

PyTorch Lightning:

  • You implement methods like training_step(), validation_step(), and configure_optimizers() inside a LightningModule.
  • The Trainer orchestrates the loop, calls these methods under the hood, and abstracts the repetitive aspects (e.g., for batch in train_loader: ...).

Benefit: In Lightning, you can focus on the logic (how to train) rather than the scaffolding (where to place your loops, how to log, etc.).

3.2 Logging & Experiment Tracking

PyTorch:

  • Typically done via custom solutions: tensorboardX, logging libraries, or manual print statements.
  • You handle code for saving metrics, writing to logs, or generating TensorBoard visualizations.

PyTorch Lightning:

  • Integrated loggers: TensorBoard, Comet, MLflow, Neptune, etc.
  • Simple calls like self.log('train_loss', loss, on_step=True) handle metric logging behind the scenes.
  • Built-in checkpointing that automatically saves your best or latest model based on validation metrics.

Benefit: Logging and checkpointing become near-automatic, encouraging better reproducibility.

3.3 Distributed & Multi-GPU Support

PyTorch:

  • Requires nn.DataParallel or more advanced approaches like DistributedDataParallel.
  • You must carefully handle device allocation, batch splitting, and synchronization in your code.

PyTorch Lightning:

  • Launch multiple processes or multi-GPU training via a single argument (e.g., Trainer(gpus=2, accelerator='gpu')).
  • Lightning manages distributed sampling, gradient synchronization, etc.

Benefit: It simplifies HPC (high-performance computing) or multi-GPU usage, letting you focus on the model rather than the details of parallelization.

3.4 Code Organization

PyTorch:

  • Flexible, but can become messy if you don’t enforce consistent code structures.
  • A typical pattern is to keep model definitions in one file, and training logic in another, but you’re free to do as you please.

PyTorch Lightning:

  • Enforces a best-practice structure: one class for your LightningModule, your data module or data loaders, and a Trainer for orchestrating runs.
  • This can create more maintainable code in production scenarios.

4. Hands-On Examples

To better illustrate, let’s consider a simple feedforward network on a dummy dataset. We’ll look at a minimal PyTorch approach and then the equivalent in PyTorch Lightning. While the following snippets are simplified, they showcase the typical differences in code structure.

4.1 Minimal Training Loop in PyTorch

import torch
import torch.nn as nn
import torch.optim as optim

# dataset (features, labels)
X = torch.randn(100, 10)
y = torch.randint(0, 2, (100,))

# Simple feedforward model
model = nn.Sequential(
nn.Linear(10, 16),
nn.ReLU(),
nn.Linear(16, 2)
)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training loop
epochs = 5
for epoch in range(epochs):
optimizer.zero_grad()
outputs = model(X)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()

# Validation step (just a demonstration - not a separate set)
with torch.no_grad():
val_outputs = model(X)
val_loss = criterion(val_outputs, y)

# Logging
print(f"Epoch: {epoch+1}, Train Loss: {loss.item():.4f}, Val Loss: {val_loss.item():.4f}")

Key Observations:

  • Manually zeroing gradients, computing forward pass, backpropagating, and logging.
  • If you want to separate training vs. validation sets, you must add additional code.
  • No built-in checkpointing or advanced features unless you code them yourself.

4.2 Equivalent Training in PyTorch Lightning

import torch
import torch.nn as nn
import torch.optim as optim
import pytorch_lightning as pl
from torch.utils.data import TensorDataset, DataLoader

class SimpleModel(pl.LightningModule):
def __init__(self):
super(SimpleModel, self).__init__()
self.model = nn.Sequential(
nn.Linear(10, 16),
nn.ReLU(),
nn.Linear(16, 2)
)
self.criterion = nn.CrossEntropyLoss()

def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):
X, y = batch
outputs = self.forward(X)
loss = self.criterion(outputs, y)
self.log("train_loss", loss)
return loss

def validation_step(self, batch, batch_idx):
X, y = batch
outputs = self.forward(X)
loss = self.criterion(outputs, y)
self.log("val_loss", loss)

def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=1e-3)

Key Observations:

  • No manual loop for epochs, and no manual zeroing of gradients.
  • Separate training_step and validation_step.
  • Logging is done self.log("train_loss", loss) automatically and integrated with Lightning’s system.

5. Flowchart Comparison

Below is a simplified illustration of how training in each framework typically flows:

VS

6. Best Practices & Use Cases

6.1 When to Stick With Plain PyTorch

  1. Research Prototypes: If you’re experimenting with brand-new architectures, where you might alter the training loop frequently.
  2. Full Control: You need to do something highly custom, like modifying gradient updates each iteration or implementing exotic optimization procedures that might not fit neatly into Lightning’s callback structure.

6.2 When to Use PyTorch Lightning

  1. Production & Team Projects: If you need consistent, readable code to onboard multiple developers.
  2. Distributed Training or Multi-GPU: Lightning drastically reduces the overhead for multi-GPU or multi-node training.
  3. Rapid Experimentation: If you value the speed of building experiments with minimal boilerplate, integrated logging, and easy debugging.

6.3 Hybrid Approach

It’s not always a binary decision. Some teams prototype in plain PyTorch, then migrate stable code to Lightning for production. You might also write custom loops in Lightning by overriding certain hooks if you need partial automation and partial custom logic.

7. Helpful Resources & Citations

  1. Official PyTorch Documentation
  2. PyTorch Lightning Official Docs
  3. PyTorch Lightning YouTube Tutorial
  4. GitHub Repos
  5. Research Paper

8. Conclusion

Choosing between PyTorch and PyTorch Lightning ultimately comes down to how much you value flexibility versus automation. PyTorch offers an unparalleled level of control, which is ideal for cutting-edge research or scenarios where you need to heavily customize training loops. PyTorch Lightning, on the other hand, wraps this power in a structured, consistent interface that reduces boilerplate code, simplifies multi-GPU training, and encourages best practices like built-in logging and modular design.

For many data scientists and machine learning engineers working on production-level code, Lightning can help maintain readability, reproducibility, and efficiency. If you’re a researcher or enjoy micromanaging every aspect of the training process, you may continue to prefer vanilla PyTorch. Indeed, the real beauty here is that PyTorch Lightning is still powered by PyTorch: if you ever need to poke under the hood, the freedom is still there.

Thank you for reading! If you enjoyed this story, please consider giving it a clap, leaving a comment to share your thoughts, and passing it along to friends or colleagues who might benefit. Your support and feedback help me create more valuable content for everyone.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->