Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

NLP (doc2vec from scratch) & Clustering: Classification of news reports based on the content of the text
Data Science   Latest   Machine Learning

NLP (doc2vec from scratch) & Clustering: Classification of news reports based on the content of the text

Last Updated on November 18, 2023 by Editorial Team

Author(s): Krikor Postalian-Yrausquin

Originally published on Towards AI.

In this example, I use NLP (Doc2Vec) and clustering algorithms to try to classify news by topic.

There are many ways to do this type of classification, such as using supervised methods (a tagged dataset), using clustering and using a specific LDA algorithm (topic modeling).

I use Doc2Vec because I consider it a good algorithm for vectorizing text and it is relatively simple to train from scratch.

The general overview of how I am going to address this situation is as follows:

As usual, the first step is to load the required libraries:

#to process data
import numpy as np
import pandas as pd

#dictionary data source is in json
import json
pd.options.mode.chained_assignment = None

#read from disk
from io import StringIO

#text preprocessing and cleaning
import re
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
nltkstop = stopwords.words('english')from nltk.stem.snowball import SnowballStemmer
nltk.download('punkt')
snow = SnowballStemmer(language='English')

#modeling
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import pairwise_distances
from sklearn.cluster import Birch
from sklearn.metrics import silhouette_samples, silhouette_score, calinski_harabasz_score
import warnings

#plots
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import seaborn as sns

Then, I read the data and prepared the dictionary files. These are originally from datasets public in Kaggle (lists of countries, names, currencies, etc.)

#this is the articles to process dataset
maindataset = pd.read_csv("articles1.csv")
maindataset2 = pd.read_csv("articles2.csv")
maindataset = pd.concat([maindataset,maindataset2], ignore_index=True)

#this is a list of countries. We will replaces the country names in the articles by xcountryx
countries = pd.read_json("countries.json")
countries["country"] = countries["country"].str.lower()
countries = pd.DataFrame(countries["country"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
countries.columns = ['word']
countries["replacement"] = "xcountryx"

#this is a list of provincies. This list includes several alternate names and a list of countries, which I am also adding to the dictionary
provincies = pd.read_csv("countries_provincies.csv")
provincies1 = provincies[["name"]]
provincies1["name"] = provincies1["name"].str.lower()
provincies1 = pd.DataFrame(provincies1["name"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies1.columns = ['word']
provincies1["replacement"] = "xprovincex"
provincies2 = provincies[["name_alt"]]
provincies2["name_alt"] = provincies2["name_alt"].str.lower()
provincies2 = pd.DataFrame(provincies2["name_alt"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies2.columns = ['word']
provincies2["replacement"] = "xprovincex"
provincies3 = provincies[["type_en"]]
provincies3["type_en"] = provincies3["type_en"].str.lower()
provincies3 = pd.DataFrame(provincies3["type_en"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies3.columns = ['word']
provincies3["replacement"] = "xsubdivisionx"
provincies4 = provincies[["admin"]]
provincies4["admin"] = provincies4["admin"].str.lower()
provincies4 = pd.DataFrame(provincies4["admin"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies4.columns = ['word']
provincies4["replacement"] = "xcountryx"
provincies5 = provincies[["geonunit"]]
provincies5["geonunit"] = provincies5["geonunit"].str.lower()
provincies5 = pd.DataFrame(provincies5["geonunit"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies5.columns = ['word']
provincies5["replacement"] = "xcountryx"
provincies6 = provincies[["gn_name"]]
provincies6["gn_name"] = provincies6["gn_name"].str.lower()
provincies6 = pd.DataFrame(provincies6["gn_name"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies6.columns = ['word']
provincies6["replacement"] = "xcountryx"
provincies = pd.concat([provincies1,provincies2,provincies3,provincies4,provincies5,provincies6], axis=0, ignore_index=True)

#currency list
currencies = pd.read_json("country-by-currency-name.json")
currencies1 = currencies[["country"]]
currencies1["country"] = currencies1["country"].str.lower()
currencies1 = pd.DataFrame(currencies1["country"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
currencies1.columns = ['word']
currencies1["replacement"] = "xcountryx"
currencies2 = currencies[["currency_name"]]
currencies2["currency_name"] = currencies2["currency_name"].str.lower()
currencies2 = pd.DataFrame(currencies2["currency_name"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
currencies2.columns = ['word']
currencies2["replacement"] = "xcurrencyx"
currencies = pd.concat([currencies1,currencies2], axis=0, ignore_index=True)

#first names
firstnames = pd.read_csv("interall.csv", header=None)
firstnames = firstnames[firstnames[1]>=10000]
firstnames = firstnames[[0]]
firstnames[0] = firstnames[0].str.lower()
firstnames = pd.DataFrame(firstnames[0].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
firstnames.columns = ['word']
firstnames["replacement"] = "xfirstnamex"

#last names
lastnames = pd.read_csv("intersurnames.csv", header=None)
lastnames = lastnames[lastnames[1]>=10000]
lastnames = lastnames[[0]]
lastnames[0] = lastnames[0].str.lower()
lastnames = pd.DataFrame(lastnames[0].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
lastnames.columns = ['word']
lastnames["replacement"] = "xlastnamex"

#month, days and other temporal names.
temporaldata = pd.read_csv("temporal.csv")

#whole dictionary
dictionary = pd.concat([lastnames,temporaldata,firstnames,currencies,provincies,countries], axis=0, ignore_index=True)
dictionary = dictionary.groupby(["word"]).first().reset_index(drop=False)
dictionary = dictionary.dropna()

maindataset

This is a preview of the original dataset

maindataset

The next functions are tasked with:

  1. Replace words using the dictionary crafted above
  2. Remove punctuation, double spaces, etc.

def replace_words(tt, lookp_dict):
temp = tt.split()
res = []
for wrd in temp:
res.append(lookp_dict.get(wrd, wrd))
res = ' '.join(res)
return res

def preprepare(eingang):
ausgang = eingang.lower()
ausgang = ausgang.replace(u'\xa0', u' ')
ausgang = re.sub(r'^\s*$',' ',str(ausgang))
ausgang = ausgang.replace('U+007C', ' ')
ausgang = ausgang.replace('ï', ' ')
ausgang = ausgang.replace('»', ' ')
ausgang = ausgang.replace('¿', '. ')
ausgang = ausgang.replace('', ' ')
ausgang = ausgang.replace('"', ' ')
ausgang = ausgang.replace("'", " ")
ausgang = ausgang.replace('?', ' ')
ausgang = ausgang.replace('!', ' ')
ausgang = ausgang.replace(',', ' ')
ausgang = ausgang.replace(';', ' ')
ausgang = ausgang.replace('.', ' ')
ausgang = ausgang.replace("(", " ")
ausgang = ausgang.replace(")", " ")
ausgang = ausgang.replace("{", " ")
ausgang = ausgang.replace("}", " ")
ausgang = ausgang.replace("[", " ")
ausgang = ausgang.replace("]", " ")
ausgang = ausgang.replace("~", " ")
ausgang = ausgang.replace("@", " ")
ausgang = ausgang.replace("#", " ")
ausgang = ausgang.replace("$", " ")
ausgang = ausgang.replace("%", " ")
ausgang = ausgang.replace("^", " ")
ausgang = ausgang.replace("&", " ")
ausgang = ausgang.replace("*", " ")
ausgang = ausgang.replace("<", " ")
ausgang = ausgang.replace(">", " ")
ausgang = ausgang.replace("/", " ")
ausgang = ausgang.replace("\\", " ")
ausgang = ausgang.replace("`", " ")
ausgang = ausgang.replace("+", " ")
ausgang = ausgang.replace("=", " ")
ausgang = ausgang.replace("_", " ")
ausgang = ausgang.replace("-", " ")
ausgang = ausgang.replace(':', ' ')
ausgang = ausgang.replace('\n', ' ').replace('\r', ' ')
ausgang = ausgang.replace(" +", " ")
ausgang = ausgang.replace(" +", " ")
ausgang = ausgang.replace('?', ' ')
ausgang = re.sub('[^a-zA-Z]', ' ', ausgang)
ausgang = re.sub(' +', ' ', ausgang)
ausgang = re.sub('\ +', ' ', ausgang)
ausgang = re.sub(r'\s([?.!"](?:\sU+007C$))', r'\1', ausgang)
return ausgang

Clean up the dictionary data

dictionary["word"] = dictionary["word"].apply(lambda x: preprepare(x))
dictionary = dictionary[dictionary["word"] != " "]
dictionary = dictionary[dictionary["word"] != ""]
dictionary = {row['word']: row['replacement'] for index, row in dictionary.iterrows()}

Preparation of the text data to convert: created a new column with a concatenation of the title (4 times) and the summary. This is what will be converted to vectors. I do this since, this way, I give more value to the title than the actual content of the article.

Then I replace the stop words and words in the dictionary

maindataset["NLPtext"] = maindataset["title"] + maindataset["title"] + maindataset["content"] + maindataset["title"] + maindataset["title"]
maindataset["NLPtext"] = maindataset["NLPtext"].str.lower()
maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: preprepare(str(x)))
maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: ' '.join([word for word in x.split() if word not in (nltkstop)]))
maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: replace_words(str(x), dictionary))

The last part of preparing the text is stemming. This is done in this case since I am training the model from scratch.

The decision to stem or not will depend on the model used. When using pretrained models as in BERT, this is not recommended since the words won’t match the words in their libraries.

def steming(sentence):
words = word_tokenize(sentence)
stems = [snow.stem(whole) for whole in words]
oup = ' '.join(stems)
return oup

maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: steming(x))
maindataset['lentitle'] = maindataset["title"].apply(lambda x: len(str(x).split(' ')))
maindataset['lendesc'] = maindataset["content"].apply(lambda x: len(str(x).split(' ')))
maindataset['lentext'] = maindataset["NLPtext"].apply(lambda x: len(str(x).split(' ')))
maindataset = maindataset[maindataset['NLPtext'].notna()]
maindataset = maindataset[maindataset['lentitle']>=4]
maindataset = maindataset[maindataset['lendesc']>=4]
maindataset = maindataset[maindataset['lentext']>=4]
maindataset = maindataset.reset_index(drop=False)
maindataset

Finally, it is time to train the doc2vec model.

#randomize the dataset
trainset = maindataset.sample(frac=1).reset_index(drop=True)
#exclude text that are too short
trainset = trainset[(trainset['NLPtext'].str.len() >= 5)]
#select the text column
trainset = trainset[["NLPtext"]]

#tokenize and produce the training set
tagged_data = []
for index, row in trainset.iterrows():
part = TaggedDocument(words=word_tokenize(row[0]), tags=[str(index)])
tagged_data.append(part)

#define the model
model = Doc2Vec(vector_size=250, min_count=3, epochs=20, dm=1)
model.build_vocab(tagged_data)

#train and save
model. Train(tagged_data, total_examples=model.corpus_count, epochs=model.epochs)
model.save("d2v.model")
print("Model Saved")

In the spirit of limiting the size of the data and time, I will filter for one news source.

maindataset.groupby('publication').count()['index']
maindatasetF = maindataset[maindataset["publication"]=="Guardian"]

Now, I vectorize the text information for the selected publication.

a = []
for index, row in maindatasetF.iterrows():
nlptext = row['NLPtext']
ids = row['index']
vector = model.infer_vector(word_tokenize(nlptext))
vector = pd.DataFrame(vector).T
vector.index = [ids]
a.append(vector)
textvectors = pd.concat(a)
textvectors

Standardize the embeddings and PCA (reduce the number of dimensions)

def properscaler(simio):
scaler = StandardScaler()
resultsWordstrans = scaler.fit_transform(simio)
resultsWordstrans = pd.DataFrame(resultsWordstrans)
resultsWordstrans.index = simio.index
resultsWordstrans.columns = simio.columns
return resultsWordstrans

datasetR = properscaler(textvectors)

def varred(simio):
scaler = PCA(n_components=0.8, svd_solver='full')
resultsWordstrans = simio.copy()
resultsWordstrans = scaler.fit_transform(resultsWordstrans)
resultsWordstrans = pd.DataFrame(resultsWordstrans)
resultsWordstrans.index = simio.index
resultsWordstrans.columns = resultsWordstrans.columns.astype(str)
return resultsWordstrans

datasetR = varred(datasetR)

The first exercise I want to attempt now is a similarity search. Find articles similar to the provided example.

#Find by index and print the original search object
index = 95133
texttofind = maindatasetF[maindatasetF["index"]==index]["title"]
print(str(texttofind))
id = index
print(str(id))
cat = maindatasetF[maindatasetF["index"]==index]["publication"]
print(str(cat))
embdfind = datasetR[datasetR.index==id]

#calculate Euclidian pairwise distances and extract the most similar to the provided example
distances = pairwise_distances(X=embdfind, Y=datasetR, metric='euclidean')
distances = pd.DataFrame(distances).T
distances.index = datasetR.index
distances = distances.sort_values(0)
distances = distances.reset_index(drop=False)
distances = pd.merge(distances, maindatasetF[["index","title","publication","content"]], left_on=["index"], right_on=["index"])
pd.options.display.max_colwidth = 100
distances.head(100)[['index',0,'publication','title']]

We can see that the extracted texts make sense, they are similar in nature to the example provided.

For clustering, the first step is finding an ideal number of clusters. At this point, we want to maximize the silhouette and Calinski Harabasz scores while at the same time keeping a logical number of clusters (not too low that are hard to interpret or to high that are too granular).

#Loop to try models and clusters 
a = []
X = datasetR.to_numpy(dtype='float')
for ncl in np.arange(2, int(20), 1):
clusterer = Birch(n_clusters=int(ncl))
#catch warnings that clutter the output
with warnings.catch_warnings():
warnings.simplefilter("ignore")
cluster_labels2 = clusterer.fit_predict(X)
silhouette_avg2 = silhouette_score(X, cluster_labels2)
calinski2 = calinski_harabasz_score(X, cluster_labels2)
row = pd.DataFrame({"ncl": [ncl],
"silKMeans": [silhouette_avg2], "c_hKMeans": [calinski2],
})
a.append(row)
scores = pd.concat(a, ignore_index=True)

#plot results
plt.style.use('bmh')
fig, [ax_sil, ax_ch] = plt.subplots(1,2,figsize=(15,7))
ax_sil.plot(scores["ncl"], scores["silKMeans"], 'b-')
ax_ch.plot(scores["ncl"], scores["c_hKMeans"], 'b-')
ax_sil.set_title("Silhouette curves")
ax_ch.set_title("Calinski Harabasz curves")
ax_sil.set_xlabel('clusters')
ax_sil.set_ylabel('silhouette_avg')
ax_ch.set_xlabel('clusters')
ax_ch.set_ylabel('calinski_harabasz')
ax_ch.legend(loc="upper right")
plt.show()

I pick up then 5 clusters and run the algorithm.

ncl_birch = 5

with warnings.catch_warnings():
warnings.simplefilter("ignore")
clusterer2 = Birch(n_clusters=int(ncl_birch))
cluster_labels2 = clusterer2.fit_predict(X)
n_clusters2 = max(cluster_labels2)
silhouette_avg2 = silhouette_score(X, cluster_labels2)
sample_silhouette_values2 = silhouette_samples(X, cluster_labels2)

finalDF = datasetR.copy()
finalDF["cluster"] = cluster_labels2
finalDF["silhouette"] = sample_silhouette_values2

#plot the silhouette scores
fig, ax2 = plt.subplots()
ax2.set_xlim([-0.1, 1])
ax2.set_ylim([0, len(X) + (n_clusters2 + 1) * 10])
y_lower = 10
for i in range(min(cluster_labels2),max(cluster_labels2)+1):
ith_cluster_silhouette_values = sample_silhouette_values2[cluster_labels2 == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters2)
ax2.fill_betweenx(
np.arange(y_lower, y_upper),
0,
ith_cluster_silhouette_values,
facecolor=color,
edgecolor=color,
alpha=0.7,
)
ax2.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
y_lower = y_upper + 10
ax2.set_title("Silhouette plot for Birch")
ax2.set_xlabel("Silhouette coefficient values")
ax2.set_ylabel("Cluster labels")
ax2.axvline(x=silhouette_avg2, color="red", linestyle="--")
ax2.set_yticks([])
ax2.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

These results are telling me that cluster number 4 might appear less “tied together” than the rest. On the contrary, cluster numbers 3 and 1 are well-defined. This is a sample of the results.

showDF = finalDF.sort_values(['cluster','silhouette'], ascending=[False,False]).groupby('cluster').head(3)
showDF = pd.merge(showDF[['cluster','silhouette']],maindatasetF[["index",'title']], left_index=True ,right_on=["index"])
showDF

I can see that cluster 4 is news related to tech, cluster 3 is for war / international events, cluster 2 is entertainment, cluster 1 is sports, and 0, as usual, is a spot that can be considered as “other”.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->