Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-FranΓ§ois Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Designing Customized and Dynamic Prompts for Large Language Models
Latest   Machine Learning

Designing Customized and Dynamic Prompts for Large Language Models

Author(s): Shenggang Li

Originally published on Towards AI.

A Practical Comparison of Context-Building, Templating, and Orchestration Techniques Across Modern LLM FrameworksPhoto by Free Nomad on Unsplash

Imagine you’re at a coffee shop, and ask for a coffee. Simple, right? But if you don’t specify details like milk, sugar, or type of roast, you might not get exactly what you wanted. Similarly, when interacting with large language models (LLMs), how you ask β€” your prompts β€” makes a big difference. That’s why creating customized (static) and dynamic prompts is important. Customized prompts are like fixed recipes; they’re consistent, reliable, and straightforward. Dynamic prompts, on the other hand, adapt based on the context, much like a skilled barista adjusting the coffee order based on your mood or the weather.

Let’s say you’re building an AI-powered customer support chatbot. If you use only static prompts, the bot might provide generic responses, leaving users frustrated. For example, asking β€œHow can I help you today”? is static and might be too vague. But a dynamic prompt might incorporate the user’s recent interactions, asking something like, β€œI see you were checking our order status. Would you like help tracking it further”? This personalized approach can dramatically improve user satisfaction.

I’ll dive into practical comparisons of these prompting methods, exploring context-building strategies, templating frameworks, and orchestration tools. I’ll examine real-world… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓