Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Big-Data Pipelines with SparkML
Data Analysis   Data Science   Machine Learning

Big-Data Pipelines with SparkML

Last Updated on January 6, 2023 by Editorial Team

Author(s): Lawrence Alaso Krukrubo

Data Analysis, Data Science, Machine Learning

Creating Apache Spark ML Pipelines for Big-Data Analysis

Photo by Rodion Kutsaev on Unsplash

Pipelines are a simple way to keep your data preprocessing and modeling code organized. Specifically, a pipeline bundles preprocessing and modeling steps so you can use the whole bundle as if it were a single step.

Many Data Scientists hack together models without Pipelines… (Kaggle)

Kaggle also says Pipelines have some important benefits, such as:

  1. Cleaner Code: Accounting for data at each step of preprocessing can get messy. With a Pipeline, you won’t need to manually keep track of your training and validation data at each step.
  2. Fewer Bugs: There are fewer opportunities to misapply a step or forget a preprocessing step.
  3. Easier to Productionize: It can be surprisingly hard to transition a model from a prototype to something deployable at scale, but Pipelines can help.
  4. More Options for Model Validation: We can easily apply cross-validation and other techniques to our Pipelines.

So, a Pipeline is a convenient process of designing our data preprocessing and Machine Learning flow. There are certain steps that we must do before the actual ML begins. These steps are called data-preprocessing and/or feature engineering.

Some Pipeline steps include:

  • Converting categorical values to nominal & numerical values
  • Normalizing the range of values per dimension
  • One-Hot encoding categorical values and…
  • Modeling… where we train our ML algorithm.

The overall idea of Pipelines is that we can fuse our complete data processing flow into one single pipeline, and that single pipeline we can further use downstream.

Some Pipeline Methods:

Image from IBM scalable-machine-learning-for-big-data-with-apache-spark

Pipeline as a Machine Learning Algorithm has the following methods…

  • Fit: Fit basically starts the training
  • Score: Score gives back the predicted value.
  • Evaluate: Evaluates the model performance on the validation data.

One extra advantage of Pipelines is that we can cross-validate, meaning, try out many, many parameters using the very same Pipeline. And this really accelerates the optimization of the algorithm.

So, in summary, pipelines are facilitating our day to day work in machine learning as we can draw from pre-defined data processing steps, we make sure everything is aligned, and we can switch and swap our algorithms as needed.

While there are plenty of materials covering Pipelines for machine learning, today we shall focus on Pipelines for machine learning on Big-data, using Apache SparkML.

1. Intro:

For this exercise, we shall use the HMP dataset. It’s basically accelerometer recordings from an accelerometer sensor attached to the human body. The data records sensors from humans when performing activities like brush-teeth, comb-hair, eat-soup, and so on.

So, we shall preprocess this dataset for Machine Learning tasks. First, manually, then we shall build a SparkML Pipeline to preprocess the dataset automatically for us. This Pipeline can be applied to future datasets.

I use Colab for my data exploration. If you need help starting Pyspark in Colab, see this link.

So first, we set up Pyspark in Colab…

2. Data Extraction

Note that the data is in a parquet file format. Parquet uses compression and column store, which maps the data layout to the Apache Spark Tungsten memory layout.

So we can see there are different folders in this HMP_dataset. Folders representing different activities such as Brush_teeth, Drink_glass, Getup_bed, Pour_water, Use_telephone.

Looking at the text files in the Brush_teeth folder, for example, we can see the accelerometer data represented in three numeric columns we may call X, Y, Z.

!head HMP_Dataset/Brush_teeth/Accelerometer-2011-04-11-13-28-18-brush_teeth-f1.txt
>>
22 49 35
22 49 35
22 52 35
22 52 35
21 52 34

Let’s recursively traverse through these folders in HMP_Dataset and create an Apache spark DataFrame from these text files. Then we just union all DataFrames <df.union(df2)> into one overall DataFrame containing all the data.

First, Let’s define the schema of the data frame below.

Now let’s traverse through the data using the OS library.

Let’s remove non-action folders from the file list. These are typically folders without an underscore in their names.

Okay, we have all the folders containing the data in one array. Now we can iterate over this array.

So from the Git gist above, first, we define an empty DataFrame and import tqdm for progress-bars. Next, we import the lit library that helps us write String literal columns to an Apache Spark DataFrame.

At this point, all we do is go through each file using the OS library, add the three numeric columns to the X, Y, Z schema we defined earlier, add these to the DataFrame and add two String Literal columns, one for the class of the accelerometer reading and the other for the source file for the reading.

Let’s see the schema of the DataFrame…

df.printSchema()
>>
root
|-- x: integer (nullable = true)
|-- y: integer (nullable = true)
|-- z: integer (nullable = true)
|-- class: string (nullable = false)
|-- source: string (nullable = false)

Let’s see the first 10 rows of the DataFrame. This takes a little while to run, cos as we know, DataFrames in Apache Spark are always lazy…

3. Data Transformation

Now we need to transform the data and create an integer representation of the class column as ML algorithms cannot cope with a String. So we will transform the class into a number of integers using the StringIndexer module.

The StringIndexer is an estimator having both fit and transform methods. So we create a StringIndexer object (indexer), pass the ‘class’ column as inputCol, and ‘classIndex’ as outputCol. Then we fit the DataFrame to the indexer, and transform the DataFrame. This creates a brand new DataFrame (indexed), which we can see above, containing the classIndex additional column.

4. One-Hot Encoding:

With the class index column, we can now do one-hot-encoding in Pyspark…

Unlike the StringIndexer, OneHotEncoder is a pure transformer, having only the transform method. It uses the same syntax of ‘inputCol’ and ‘outputCol’ we saw in StringIndexer. We pass ‘classIndex’ and ‘categoryVec’ values, respectively. OneHotEncoder also creates a brand new DataFrame (encoded), with a category_vec’ column added to the previous DataFrame(indexed).

One more thing to note is that calling encoded.show(10, False) in the Git gist above, ensures that 10 rows are displayed and False ensures that each column element is fully expanded, cos normally SparkML compresses column cells.

Finally, OneHotEncoder in SparkML doesn't return several columns containing only zeros and one at a point where a value existed, as we all know… Rather it returns a sparse-vector as seen in the categoryVec column. Thus, for the ‘Drink_glass’ class above, SparkML returns a sparse-vector that basically says there are 13 elements, and at position 2, the class value exists(1.0).

5. VectorAssembler:

The next thing we need to do is to transform our numerical columns X, Y, Z into vectors because sparkML can only work on vector objects. So let’s import Vectors and VectorAssembler libraries

The VectorAssembler object gets initialized with the same syntax we used in StringIndexer and OneHotEncoder. We pass list [‘x’, ‘y’, ‘z’] to inputCols, and we specify outputCol = ‘features’. This is also a pure transformer like OneHotEncoder. So we transform the DataFrame from the last step (encoded) into a new DataFrame (features_vectorized) with the features column added.

The consistency of SparkML syntax is quite impressive, it reduces the learning curve for Big-Data Enthusiasts…

5. Normalizing The Dataset:

So, the next step is to normalize the data set. This makes the range of values in the data set for all numerical columns to be between 0 and 1 or -1 and 1. The idea is to have all features data within the same range, so no one overshadows the other.

We must have gotten used to this by now, StringIndexer, OneHotEncoder, VectorAssembler, and Normalizer all have consistent syntax. Looking at the Normalizer object, it contains the parameter p=1.0. Note that the default norm value for Pyspark Normalizer is p=2.0.

p=1.0 means the features are normalized based on the Manhattan Distance. Manhattan distance or taxi-cab distance between two points is the sum of the absolute difference between corresponding coordinates of these two points in the feature vectors. So these features are normalized based on this metric.

While…

p=2.0 means the features are normalized based on the Euclidean Distance. Euclidean distance between two points is exactly the same as computing the magnitude of the vector connecting these two points.

Note that these are the same methods used by clustering algorithms like KNN and K-means, for example.

This is basic to intermediate Linear Algebra, My advice to budding Data Scientists is… Quit chasing each fancy, shiny Algorithm you hear of, rather, spend time to build a solid foundation for Data Science, based on Linear-Algebra, Statistics, Probability and Calculus…

6. Creating The Pipeline:

The Pipeline constructor below takes an array of Pipeline stages we pass to it. Here we pass the 4 stages above in the right sequence, one after another.

And that's it! Creating Pipelines in Apache SparkML is as straight as a ruler…

We define the steps or stages and pass them in a logical sequence to the Pipeline constructor.

Now let’s fit the Pipeline object to our original data frame…

data_model = pipeline.fit(df)

Finally, let’s transform our data frame using the Pipeline Object.

pipelined_data = data_model.transform(df)

Let’s see the first ten rows…

So we see that exactly the same DataFrame as created before from the individual stages has been created using the Pipeline function. Now we can fit and transform our data in one go. This is a really handy function.

So at this point, we simply drop the other columns that we don’t need…

We use a list-comprehension to select the cols we need (categoryVec and features_norm) and simply create a new DataFrame with these columns.

So finally, we have our categoryVec column, which is the target variable, and our features_norm column, which is the feature set for the Machine Learning algorithm we’ve been preparing to train…

Summary…

Photo by Luca Bravo on Unsplash

We have seen how to create Apache spark ML Pipelines from our data set. Go out there and use this knowledge to build more robust data and Machine-Learning solutions.

The complete Notebook can be found here on Github.

Credit goes to The IBM Advanced Data Science Team at Coursera…

Cheers!!

About Me:

Lawrence is a Data Specialist at Tech Layer, passionate about fair and explainable AI and Data Science. I believe that sharing knowledge and experiences is the best way to learn. I hold both the Data Science Professional and Advanced Data Science Professional certifications from IBM and the IBM Data Science Explainability badge, as well as the Artificial Intelligence Nanodegree from Udacity. I have conducted several projects using ML and DL libraries. I love to code up my functions as much as possible. Finally, I never stop learning and exploring, and yes, I have written several highly recommended articles.

Feel free to find me on:-

Github

Linkedin

Twitter


Big-Data Pipelines with SparkML was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->