Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Multimodal Data Integration: How Artificial Intelligence Is Revolutionizing Cancer Care
Artificial Intelligence   Latest   Machine Learning

Multimodal Data Integration: How Artificial Intelligence Is Revolutionizing Cancer Care

Last Updated on November 5, 2023 by Editorial Team

Author(s): Max Charney

Originally published on Towards AI.

Introspection of histology image model features. Image credits to Lipkova et al., the authors of the multimodal data integration in oncology paper.

I recently read this article (link) about multimodal data integration for oncology with artificial intelligence (AI). I found the topics covered super interesting because of the new potential for accurate patient outcome predictions as well as opportunities for finding relevant biomarkers/biological pathways. Very cool. Let’s dive into it.

Some of the required information and potential applications of multimodal data integration. Image credits to Lipkova et al., the authors of the multimodal data integration in oncology paper.

Multimodal Data refers to different types of information sources (data). Cancer can be characterized by many types of modalities, such as radiology (images), genomics (genes, DNA), and histology (tissue samples). Current AI primarily operates with single modalities, neglecting the broader clinical contexts and opportunities, ultimately diminishing their effectiveness and potential. Multimodal data integration enables models to discover novel patterns within and across modalities, leading to the exploration and discovery of novel biomarkers, better prediction of patient outcomes or treatment results, and overall improved personalized care.

Multimodal Data Fusion is the integration of multiple data sources. There are three main types of data fusion: early fusion, intermediate fusion, and late fusion. In essence, each term refers to the stage of the deep learning framework at which the fusion of multimodal data occurs.

Different fusion methods. Image credits to Lipkova et al., the authors of the multimodal data integration in oncology paper.

Survival Prediction, or the prediction of how long a patient will survive, is often performed with the Cox proportional hazards (Cox-PH) model. This multivariate linear regression model requires input data/features for its predictions. However, in the modern day, there’s so much medical information! We now use artificial intelligence (supervised, weakly supervised, and unsupervised learning methods) to extract features from data and use them as input data in Cox-PH models. Multimodal data integration in AI has proved to result in better survival prediction results.

Model Interpretability/Introspection is critical to AI development, deployment, and validation. While AI models have the ability to learn abstract feature representations, there is concern that models will use ineffective, spurious shortcuts rather than learning clinically relevant aspects. In order to learn more, scientists have come up with methods to see how the model is thinking and why it makes certain predictions.

Introspection Methods often vary per data type. With histology images, heatmaps are often used; in radiology, attention scores are often used; with molecular data, integrated gradient methods (compute attribution values indicating how changes in specific inputs affect the outputs) are often used. When taking a more holistic approach, attribution plots can be implemented to determine the contribution of each modality toward the overall model prediction. Introspective methods are typically class activation methods (CAMs) which allow one to determine the importance of the model inputs (e.g., pixels) by computing how changes in the inputs affect the model outputs for each prediction class.

Multimodal interpretab ility and introspection. Image credits to Lipkova et al., the authors of the multimodal data integration in oncology paper.

Benefits of Multimodal Data Interconnection. Malignant changes can often be seen across different scales; for example, a genetic mutation can affect cell behavior, which in turn reshapes tissue morphology or the tumor microenvironment visible in histology images.

  • Morphological associates can serve as cost-efficient biomarker substitutes to support screening in low-middle-income settings.
  • Associates can reveal new therapeutic targets.
  • Identified relationships between non-invasive (e.g., radiological) and invasive (e.g., histological) modalities will enable outcome predictions from non-invasive procedures.
  • Associates between data acquired (e.g., Electronic Medical Records) prior to more in-depth procedures will enable quicker and easier identification of potential predictive risk factors.
Multimodal data interconnectedness; feasibility demonstrates how models work (from input to output); exploration demonstrates model interpretation and introspection. Image credits to Lipkova et al., the authors of the multimodal data integration in oncology paper.

Conclusions. Looking forward, many obstacles exist for the development of artificial intelligence with multimodal data integration for cancer care, such as data fairness and bias implications, limited interpretability, and more. On the other hand, AI has the potential to transform and improve oncology significantly. Many AI avenues possess the potential for great impact; examples include the prediction of patient outcomes (like prognosis, survival, and recurrence), efficient diagnosis, optimal treatment capabilities, and the discovery and exploration of novel biomarkers and biological pathways. Overall, this field is extremely exciting, and I can’t wait to share more. And there’s great news for machine learning enthusiasts like me! You can use various multimodal data integration models through GitHub repositories such as this one from Harvard Medical School.

Perhaps in the future, AI will be able to autonomously manage the entire healthcare process…

I’ve listed some other resources below that may be of interest.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓