Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Machine Learning Standardization (Z-Score Normalization) with Mathematics
Machine Learning   Mathematics

Machine Learning Standardization (Z-Score Normalization) with Mathematics

Last Updated on November 17, 2021 by Editorial Team

Author(s): Saniya Parveez

Introduction

In Machine Learning, feature scaling is very important and a dime a dozen because it makes sure that the features of the data-set are measured on the same scale. The concept of feature scaling has come to the fore from statistics. It is an approach to plonk different variables on the same scale. It is commonly used when data-set has varying scales. Sometimes the features of data-set use to have exhaustive and large differences between their ranges. So, in this case, standardization overawes on the data-set to bring all on the sameΒ scale.

This concept is extensively used in SVM, Logistic Regression, and NeuralΒ Network.

The concept of Standardization (Z-Score Normalization) is completely based on the mathematical concepts called Standard Derivation and Variance.

Variance

The variance is the average of the squared difference from theΒ mean.

Below are steps to derive variance:

  • Calculate theΒ mean
  • Subtract the value of mean from eachΒ number
  • Square the subtracted result

Equation:

Example:

Let’s there are different categories of cats with their heightΒ (mm).

Here, A = Type of cat and B = Height ofΒ cat

Calculate the variance of cats’ height:

Now, calculate each cat’s height difference from the derivedΒ mean:

Calculate variance:

Standard Deviation

Standard Deviation is the square root of variance.

Equation of Standard Deviation:

Now, calculate standard deviation from the value of variance:

This derived value says that which cat’s height is within this standard deviation range.

Standardization (Z-Score Normalization)

Standardization is the concept and step of putting different variables on the same scale. This concept allows comparing scores between different types of variables.

Equation of Standardization:

Add altΒ text

An Example where Standardization isΒ used

Lets there are two-dimensional data-set with two different featuresβ€Šβ€”β€Šheight andΒ BMI.

Height is in inch and BMI is in its value and here the value of height is very large in comparison with BMI. So, height will dominate over the BMI feature and will have more contribution to the distance computation.

Height(inch) = [165,Β 172]

BMI = [18.5.Β 25]

This problem can be solved by applying the technique of Standardization (Z-Score Normalization).

Conclusion

There are two common approaches to bringing different features onto the same scale: normalization and standardization. Most often, normalization refers to the rescaling of the features to a range of [0, 1], which is a special case of min-max scaling. Using standardization, we center the feature columns at mean 0 with standard deviation 1 so that the feature columns take the form of a normal distribution, which makes it easier to learn the weights. Standardization maintains useful information about outliers and makes the algorithm less sensitive to them in contrast to min-maxΒ scaling.


Machine Learning Standardization (Z-Score Normalization) with Mathematics was originally published in Towards AIβ€Šβ€”β€ŠMultidisciplinary Science Journal on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓