Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Freezing Layers of a Deep Learning Model — the proper way
Latest   Machine Learning

Freezing Layers of a Deep Learning Model — the proper way

Last Updated on July 15, 2023 by Editorial Team

Author(s): Alexey Kravets

Originally published on Towards AI.

ADAM optimizer example in PyTorch

Jason Mitrione on unsplash

Introduction

It is often useful to freeze some of the parameters for example when you are fine-tuning your model and want to freeze some layers depending on the example you process like illustrated

SpotTune: Transfer Learning through Adaptive Fine-tuning

As we can see for the first example we are freezing the first two layers, and updating the parameters of the last two while for the second example we freeze the second and forth layer and fine-tuning the others. There will be many other cases when this technique is useful and if are are reading this article you will probably have a case for this.

Problem setting

To simplify things a little bit, let’s assume we have a model that accepts two different types of inputs — one with 3 features an other with 2 features, and depending on which inputs are passed we are going to pass them through two different initial layers. Thus, we want to update only the parameters related to those particular inputs during training. As we can see below, we want to freeze hidden_task1 layer when input1 is passed and freeze hidden_task2 layer when input2 is passed.


class Network(nn.Module):
def __init__(self):
super().__init__()

# Inputs to hidden layer linear transformation
self.hidden_task1 = nn.Linear(3, 3, bias=False)
self.hidden_task2 = nn.Linear(2, 3, bias=False)
self.output = nn.Linear(3, 4, bias=False)

# Define sigmoid activation and softmax output
self.sigmoid = nn.Sigmoid()
self.softmax = nn.Softmax(dim=1)

def forward(self, x, task='task1'):
if task == 'task1':
x = self.hidden_task1(x)
else:
x = self.hidden_task2(x)
x = self.sigmoid(x)
x = self.output(x)
x = self.softmax(x)

return x

def freeze_params(self, params_str):
for n, p in self.named_parameters():
if n in params_str:
p.grad = None

def freeze_params_grad(self, params_str):
for n, p in self.named_parameters():
if n in params_str:
p.requires_grad = False

def unfreeze_params_grad(self, params_str):
for n, p in self.named_parameters():
if n in params_str:
p.requires_grad = True

# define input and target
input1 = torch.randn(10, 3).to(device)
input2 = torch.randn(10, 2).to(device)

target1 = torch.randint(0, 4, (10, )).long().to(device)
target2 = torch.randint(0, 4, (10, )).long().to(device)

net = Network().to(device)

# helper
def changed_parameters(initial, final):
for n, p in initial.items():
if not torch.allclose(p, final[n]):
print("Changed : ", n)

In a world with only SGD optimizers

If we were working with SGD optimizer only, the problem would be solved simply using requires_grad = False that would not compute the gradients for the parameters we specify and thus we would obtain the desired results.

original_param = {n : p.clone() for (n, p) in net.named_parameters()}
print("Original params ")
pprint(original_param)
print(100 * "=")

# let's define 2 loss functions (we could only define one actually
# in this case as they are the same)
criterion1 = nn.CrossEntropyLoss()
criterion2 = nn.CrossEntropyLoss()

optimizer = optim.SGD(net.parameters(), lr=0.9)

# set requires_grad to False for selected layers
net.freeze_params_grad(['hidden_task2.weight'])

print("Params after task 1 update ")
params_hid1 = {n : p.clone() for (n, p) in net.named_parameters()}
pprint(params_hid1)
print(100 * "=")

# output for task 1 - we want to keep frozen task2 layer parameters
output = net(input1, task='task1')
optimizer.zero_grad() # zero the gradient buffers
loss1 = criterion(output, target)
loss1.backward()

optimizer.step()
print("States optimizer 1: ")
print(optimizer.state)
# set requires_grad back to True for selected layers
net.unfreeze_params_grad(['hidden_task2.weight'])

# output for task 2 - we want to keep frozen task1 layer parameters
output1 = net(input2, task='task2')
optimizer.zero_grad() # zero the gradient buffers
loss2 = criterion1(output1, target1)
loss2.backward()

optimizer.step() # Does the update

print("States optimizer 1: ")
print(optimizer.state)

# set requires_grad back to True for selected layers
net.unfreeze_params_grad(['hidden_task1.weight'])

print("Params after task 2 update ")
params_hid2 = {n : p.clone() for (n, p) in net.named_parameters()}
pprint(params_hid2)
changed_parameters(params_hid1, params_hid2)

In the outputs below we can see that the “Changed” parameter after the task 1 & task 2 updates are correct and we achieved the desired result.

{'hidden_task1.weight': tensor([[-0.0043, 0.3097, -0.4752],
[-0.4249, -0.2224, 0.1548],
[-0.0114, 0.4578, -0.0512]], device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1871, -0.2137],
[-0.1390, -0.6755],
[-0.4683, -0.2915]], device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.0214, 0.2282, 0.3464],
[-0.3914, -0.2514, 0.2097],
[ 0.4794, -0.1188, 0.4320],
[-0.0931, 0.0611, 0.5228]], device='cuda:0',
grad_fn=<CloneBackward0>)}
====================================================================================================
Params after hidden
{'hidden_task1.weight': tensor([[ 0.0010, 0.3107, -0.4746],
[-0.4289, -0.2261, 0.1547],
[-0.0105, 0.4596, -0.0528]], device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1871, -0.2137],
[-0.1390, -0.6755],
[-0.4683, -0.2915]], device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.0554, 0.2788, 0.3800],
[-0.4105, -0.2702, 0.1917],
[ 0.4552, -0.1496, 0.4091],
[-0.0838, 0.0601, 0.5301]], device='cuda:0',
grad_fn=<CloneBackward0>)}
====================================================================================================
Changed : hidden_task1.weight
Changed : output.weight
Params after hidden 1
{'hidden_task1.weight': tensor([[ 0.0010, 0.3107, -0.4746],
[-0.4289, -0.2261, 0.1547],
[-0.0105, 0.4596, -0.0528]], device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1906, -0.2102],
[-0.1412, -0.6783],
[-0.4657, -0.2929]], device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.0386, 0.2673, 0.3726],
[-0.3818, -0.2414, 0.2232],
[ 0.4402, -0.1698, 0.3898],
[-0.0807, 0.0631, 0.5254]], device='cuda:0',
grad_fn=<CloneBackward0>)}
Changed : hidden_task2.weight
Changed : output.weight

Complications with Adaptive Optimizers

Now let’s try to run the same again, but using Adam optimizer :

optimizer = optim.Adam(net.parameters(), lr=0.9)

In the “Changed” part we now see that after the second task update, hidden_task1.weight got changed as well, which is not what we want.

Original params 
{'hidden_task1.weight': tensor([[-0.0043, 0.3097, -0.4752],
[-0.4249, -0.2224, 0.1548],
[-0.0114, 0.4578, -0.0512]], device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1871, -0.2137],
[-0.1390, -0.6755],
[-0.4683, -0.2915]], device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.0214, 0.2282, 0.3464],
[-0.3914, -0.2514, 0.2097],
[ 0.4794, -0.1188, 0.4320],
[-0.0931, 0.0611, 0.5228]], device='cuda:0',
grad_fn=<CloneBackward0>)}
====================================================================================================
Params after hidden
{'hidden_task1.weight': tensor([[ 0.8957, 1.2069, 0.4291],
[-1.3211, -1.1204, -0.7465],
[ 0.8887, 1.3537, -0.9508]], device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1871, -0.2137],
[-0.1390, -0.6755],
[-0.4683, -0.2915]], device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.9212, 1.1262, 1.2433],
[-1.2879, -1.1492, -0.6922],
[-0.4249, -1.0177, -0.4718],
[ 0.8078, -0.8394, 1.4181]], device='cuda:0',
grad_fn=<CloneBackward0>)}
====================================================================================================

Changed : hidden_task1.weight
Changed : output.weight

Params after hidden 1
{'hidden_task1.weight': tensor([[ 1.4907, 1.7991, 1.0283],
[-1.9122, -1.7133, -1.3428],
[ 1.4837, 1.9445, -1.5453]], device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[-0.7146, -1.1118],
[-1.0377, 0.2305],
[-1.3641, -1.1889]], device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.9372, 1.3922, 1.5032],
[-1.5886, -1.4844, -0.9789],
[-0.8855, -1.5812, -1.0326],
[ 1.6785, -0.2048, 2.3004]], device='cuda:0',
grad_fn=<CloneBackward0>)}


Changed : hidden_task1.weight
Changed : hidden_task2.weight
Changed : output.weight

Let’s try to understand what is going on here. The update rule for SGD is defined as:

Where alpha is the learning rate, nabla L is the gradient with respect to the parameters. As we can see, if the gradient is zero the parameters do not get updated as the updates rule is only a function of the gradients. And when we set requires_grad = False the gradients will be zero for those layers and won’t be computed.

What about Adaptive optimizers such as ADAM or others where the update rule is not only a function of the gradients? Let’s look at ADAM:

Where Beta1, Beta2 are some hyper-parameters, alpha is the learning rate, mt is the first moment and vt is the second moment of the gradients gt. This update rule allows to compute adaptive learning rates for each parameter.
Most importantly for our problem, even if the current gradient gt is set to zero through requires_grad = False , the parameters are still updated by the optimizer using the stored mt and vt values. Indeed, if we print optimizer.state we can see that the optimizer stores the number of steps (i.e., the number of gradient updates that each parameter had), exp_avg, which is the first moment and exp_avg_sq the second moment:

# optimizer step 1
defaultdict(<class 'dict'>, {Parameter containing:
tensor([[ 0.8957, 1.2069, 0.4291],
[-1.3211, -1.1204, -0.7465],
[ 0.8887, 1.3537, -0.9508]], device='cuda:0', requires_grad=True):
{'step': tensor(1.),
'exp_avg': tensor([[-5.9304e-04, -1.0966e-04, -5.9985e-05],
[ 4.4068e-04, 4.1636e-04, 1.7705e-05],
[-1.0544e-04, -2.0357e-04, 1.7783e-04]], device='cuda:0'),
'exp_avg_sq': tensor([[3.5170e-08, 1.2025e-09, 3.5982e-10],
[1.9420e-08, 1.7336e-08, 3.1345e-11],
[1.1118e-09, 4.1440e-09, 3.1623e-09]], device='cuda:0')},
Parameter containing:
tensor([[ 0.9212, 1.1262, 1.2433],
[-1.2879, -1.1492, -0.6922],
[-0.4249, -1.0177, -0.4718],
[ 0.8078, -0.8394, 1.4181]], device='cuda:0', requires_grad=True):
{'step': tensor(1.),
'exp_avg': tensor([[-0.0038, -0.0056, -0.0037],
[ 0.0021, 0.0021, 0.0020],
[ 0.0027, 0.0034, 0.0025],
[-0.0010, 0.0001, -0.0008]], device='cuda:0'),
'exp_avg_sq': tensor([[1.4261e-06, 3.1517e-06, 1.3953e-06],
[4.4782e-07, 4.3352e-07, 3.9994e-07],
[7.2213e-07, 1.1702e-06, 6.4754e-07],
[1.0547e-07, 1.2353e-09, 6.5470e-08]], device='cuda:0')}})

# optimizer step 2
tensor([[ 1.4907, 1.7991, 1.0283],
[-1.9122, -1.7133, -1.3428],
[ 1.4837, 1.9445, -1.5453]], device='cuda:0', requires_grad=True):
{'step': tensor(2.),
'exp_avg': tensor([[-5.3374e-04, -9.8693e-05, -5.3987e-05],
[ 3.9661e-04, 3.7472e-04, 1.5934e-05],
[-9.4899e-05, -1.8321e-04, 1.6005e-04]], device='cuda:0'),
'exp_avg_sq': tensor([[3.5135e-08, 1.2013e-09, 3.5946e-10],
[1.9400e-08, 1.7318e-08, 3.1314e-11],
[1.1107e-09, 4.1398e-09, 3.1592e-09]], device='cuda:0')},
Parameter containing:
tensor([[ 0.9372, 1.3922, 1.5032],
[-1.5886, -1.4844, -0.9789],
[-0.8855, -1.5812, -1.0326],
[ 1.6785, -0.2048, 2.3004]], device='cuda:0', requires_grad=True):
{'step': tensor(2.), 'exp_avg': tensor([[-0.0002, -0.0025, -0.0017],
[ 0.0011, 0.0011, 0.0010],
[ 0.0019, 0.0029, 0.0021],
[-0.0028, -0.0015, -0.0014]], device='cuda:0'),
'exp_avg_sq': tensor([[2.4608e-06, 3.7819e-06, 1.6833e-06],
[5.1839e-07, 4.8712e-07, 4.7173e-07],
[7.4856e-07, 1.1713e-06, 6.4888e-07],
[4.4950e-07, 2.6660e-07, 1.1588e-07]], device='cuda:0')},
Parameter containing:
tensor([[-0.7146, -1.1118],
[-1.0377, 0.2305],
[-1.3641, -1.1889]], device='cuda:0', requires_grad=True):
{'step': tensor(1.),
'exp_avg': tensor([[ 0.0009, 0.0011],
[ 0.0045, -0.0002],
[ 0.0003, 0.0012]], device='cuda:0'),
'exp_avg_sq': tensor([[8.7413e-08, 1.3188e-07],
[1.9946e-06, 4.3840e-09],
[8.1403e-09, 1.3691e-07]], device='cuda:0')}})

We can see that in the first optimizer.step() update we get only two parameters in the optimizer states — hidden_task1and output . In the second optimizer’s step, we have all the parameters but notice that hidden_task1 is updated twice which it shouldn’t.

So how to deal with them? The solution is actually very simple — instead of using requires_grad set simply set grad = None for the parameters. The code thus becomes:

original_param = {n : p.clone() for (n, p) in net.named_parameters()}
print("Original params ")
pprint(original_param)
print(100 * "=")

# let's define 2 loss functions (we could only define one actually
# in this case as they are the same)
criterion1 = nn.CrossEntropyLoss()
criterion2 = nn.CrossEntropyLoss()

optimizer = optim.SGD(net.parameters(), lr=0.9)


print("Params after task 1 update ")
params_hid1 = {n : p.clone() for (n, p) in net.named_parameters()}
pprint(params_hid1)
print(100 * "=")

# output for task 1 - we want to keep frozen task2 layer parameters
output = net(input1, task='task1')
optimizer.zero_grad() # zero the gradient buffers
loss1 = criterion1(output, target1)
loss1.backward()
# Freeze parameters here!
net.freeze_params(['hidden_task2.weight'])
optimizer.step()

# output for task 2 - we want to keep frozen task1 layer parameters
output = net(input2, task='task2')
optimizer.zero_grad() # zero the gradient buffers
loss2 = criterion2(output, target2)
loss2.backward()
# Freeze parameters here!
net.freeze_params_grad(['hidden_task1.weight'])
optimizer.step() # Does the update

print("Params after task 2 update ")
params_hid2 = {n : p.clone() for (n, p) in net.named_parameters()}
pprint(params_hid2)
changed_parameters(params_hid1, params_hid2)

Note that we need to set grad = None after loss.backward() as we need to compute the gradients for all the parameters first, but before optimizer.step().

If we run the code now the ADAM optimizer, the results are as expected

Original params 
{'hidden_task1.weight': tensor([[-0.0043, 0.3097, -0.4752],
[-0.4249, -0.2224, 0.1548],
[-0.0114, 0.4578, -0.0512]]
, device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1871, -0.2137],
[-0.1390, -0.6755],
[-0.4683, -0.2915]]
, device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.0214, 0.2282, 0.3464],
[-0.3914, -0.2514, 0.2097],
[ 0.4794, -0.1188, 0.4320],
[-0.0931, 0.0611, 0.5228]]
, device='cuda:0',
grad_fn=<CloneBackward0>)}
====================================================================================================
Params after task 1 update
{'hidden_task1.weight': tensor([[ 0.8957, 1.2069, 0.4291],
[-1.3211, -1.1204, -0.7465],
[ 0.8887, 1.3537, -0.9508]]
, device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[ 0.1871, -0.2137],
[-0.1390, -0.6755],
[-0.4683, -0.2915]]
, device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.9212, 1.1262, 1.2433],
[-1.2879, -1.1492, -0.6922],
[-0.4249, -1.0177, -0.4718],
[ 0.8078, -0.8394, 1.4181]]
, device='cuda:0',
grad_fn=<CloneBackward0>)}
====================================================================================================
Changed : hidden_task1.weight
Changed : output.weight
Params after task 2 update
{'hidden_task1.weight': tensor([[ 0.8957, 1.2069, 0.4291],
[-1.3211, -1.1204, -0.7465],
[ 0.8887, 1.3537, -0.9508]]
, device='cuda:0',
grad_fn=<CloneBackward0>),
'hidden_task2.weight': tensor([[-0.7146, -1.1118],
[-1.0377, 0.2305],
[-1.3641, -1.1889]]
, device='cuda:0', grad_fn=<CloneBackward0>),
'output.weight': tensor([[ 0.9372, 1.3922, 1.5032],
[-1.5886, -1.4844, -0.9789],
[-0.8855, -1.5812, -1.0326],
[ 1.6785, -0.2048, 2.3004]]
, device='cuda:0',
grad_fn=<CloneBackward0>)}
Changed : hidden_task2.weight
Changed : output.weight

Also the optimizer.state is now different — in the second optimizer’s step hidden_task1 is not updated and its step value is 1.

tensor([[ 0.8957, 1.2069, 0.4291],
[-1.3211, -1.1204, -0.7465],
[ 0.8887, 1.3537, -0.9508]]
, device='cuda:0', requires_grad=True):
{'step': tensor(1.),
'exp_avg': tensor([[-5.9304e-04, -1.0966e-04, -5.9985e-05],
[ 4.4068e-04, 4.1636e-04, 1.7705e-05],
[-1.0544e-04, -2.0357e-04, 1.7783e-04]]
, device='cuda:0'),
'exp_avg_sq': tensor([[3.5170e-08, 1.2025e-09, 3.5982e-10],
[1.9420e-08, 1.7336e-08, 3.1345e-11],
[1.1118e-09, 4.1440e-09, 3.1623e-09]]
, device='cuda:0')},
Parameter containing:
tensor([[ 0.9372, 1.3922, 1.5032],
[-1.5886, -1.4844, -0.9789],
[-0.8855, -1.5812, -1.0326],
[ 1.6785, -0.2048, 2.3004]]
, device='cuda:0', requires_grad=True):
{'step': tensor(2.),
'exp_avg': tensor([[-0.0002, -0.0025, -0.0017],
[ 0.0011, 0.0011, 0.0010],
[ 0.0019, 0.0029, 0.0021],
[-0.0028, -0.0015, -0.0014]]
, device='cuda:0'),
'exp_avg_sq': tensor([[2.4608e-06, 3.7819e-06, 1.6833e-06],
[5.1839e-07, 4.8712e-07, 4.7173e-07],
[7.4856e-07, 1.1713e-06, 6.4888e-07],
[4.4950e-07, 2.6660e-07, 1.1588e-07]]
, device='cuda:0')},
Parameter containing:
tensor([[-0.7146, -1.1118],
[-1.0377, 0.2305],
[-1.3641, -1.1889]]
, device='cuda:0', requires_grad=True):
{'step': tensor(1.),
'exp_avg': tensor([[ 0.0009, 0.0011],
[ 0.0045, -0.0002],
[ 0.0003, 0.0012]]
, device='cuda:0'),
'exp_avg_sq': tensor([[8.7413e-08, 1.3188e-07],
[1.9946e-06, 4.3840e-09],
[8.1403e-09, 1.3691e-07]]
, device='cuda:0')}})

Distributed Data Parallel

As an additional note, in case we want the support of DistributedDataParallel in PyTorch to work with multiple GPUs, we need to slightly modify the implementation described above as follows:

It is a little bit more complicated, and if you know of a cleaner way to write it please share in the comments!

Feedback

I would appreciate any feedback on the above — if you know whether there might be any potential problems doing it this way and if there are other ways to achieve the same.

Conclusions

In this article, we described how to do layers freezing when during training we need to freeze and unfreeze some layers. If what you want is to freeze completely some of the layers during the whole training, you can use both solutions described in this article, as it would not matter in your case whether you are using SGD or an adaptive optimizer. However, as we have seen, the issue arises when you need to freeze and unfreeze layers during training, and the different behavior we see when using optimizers whose update rule only depends on the gradient and the ones whose update rule depends on other variables such as momentum. You can also find the full code here.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->