Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Lazypredict: Run all sklearn algorithms with a line of code
Latest

Lazypredict: Run all sklearn algorithms with a line of code

Last Updated on December 26, 2022 by Editorial Team

Author(s): Travis Tang

Originally published on Towards AI the World’s Leading AI and Technology News and Media Company. If you are building an AI-related product or service, we invite you to consider becoming an AI sponsor. At Towards AI, we help scale AI and technology startups. Let us help you unleash your technology to the masses.

Lazypredict: Run All Sklearn Algorithms With a Line Of Code

How to (and why you shouldn’t) use it

Here are two pain points of data scientists:

Pain Point 1: Limited time in the data science lifecycle

Data scientists have to prioritize. This may mean spending more time on understanding the business problem and identifying the most appropriate approach rather than focusing solely on developing machine learning algorithms.

Pain point 2: Machine learning modeling can be time-consuming

Fine-tuning a machine learning algorithm involves finding the optimal values for these hyperparameters, which can be a trial-and-error process. This takes a long time.

Automated machine learning can help data scientists tremendously. Image by stable diffusion.

AutoML saves the day

AutoML can address these. One nascent library is lazypredict. In this post, I run through the following:

  • What is lazypredict
  • Installing lazypredict
  • How to use it for automatically fit scikit-learn regression algorithms
  • How to use it for automatically fit classification algorithms
  • Why you shouldn’t use it (and what else you can use)

Note: I’m not affiliated with lazypredict.

What is Lazypredict

Lazypredict is a Python package that aims to automate the machine learning modeling process. It works on both regression and classification tasks.

Its key feature is its ability to automate the training and evaluation of machine learning models. It provides a simple interface for defining a range of hyperparameters and then trains and evaluates a model using a variety of different combinations of these hyperparameters.

Installing Lazypredict

On your terminal, run the following

pip install lazypredict

However, you might need to manually install some dependencies of lazypredict. If you run into issues that say that you need to install scikit-learn, xgboost, or lightgbm, you can run pip install to install the necessary libraries.

Personally, I got it to work on python 3.9.13by having the following requirements.txt

pandas==1.4.4
numpy==1.21.5
scikit-learn==1.0.2
lazypredict==0.2.12

I installed the following libraries by running this command on the terminal: pip install -r requirements.txt .

It’s even better to use a virtual environment in this case.

Using Lazypredict for Regression

Let’s walk through the code. (If you just want the complete code, search “Full code” in this article.)

We’ll first import the necessary libraries.

from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np

First, we’ll import the Diabetes dataset.

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

# Import the Diabetes Dataset
diabetes = datasets.load_diabetes()

Next, we shuffle the dataset so that we can split them into train-test sets.

# Shuffle the dataset 
X, y = shuffle(diabetes.data, diabetes.target, random_state=13)

# Cast the numerical values into a numpy float.
X = X.astype(np.float32)

# Split the dataset into 90% and 10%.
offset = int(X.shape[0] * 0.9)

# Split into train and test
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

Next, we initialize the LazyRegressor object.

# Running the Lazypredict library and fit multiple regression libraries
# for the same dataset
reg = LazyRegressor(verbose=0,
ignore_warnings=False,
custom_metric=None,
predictions=False,
random_state = 13)

# Parameters
# ----------
# verbose : int, optional (default=0)
# For the liblinear and lbfgs solvers set verbose to any positive
# number for verbosity.
# ignore_warnings : bool, optional (default=True)
# When set to True, the warning related to algorigms that are not able
# to run are ignored.
# custom_metric : function, optional (default=None)
# When function is provided, models are evaluated based on the custom
# evaluation metric provided.
# prediction : bool, optional (default=False)
# When set to True, the predictions of all the models models are
# returned as dataframe.
# regressors : list, optional (default="all")
# When function is provided, trains the chosen regressor(s).

Now, we will fitmultiple regression algorithms with the lazypredict library. This step took 3 seconds in total.

Under the hood, the fit method does the following:

  1. Split all features into three categories: numerical (features which are numbers) or categorical (features which are text)
  2. Further split categorical features into two: ‘High’ categorical features (which have more unique values than the total number of features) and ‘low’ categorical features (which have less unique values than the total number of features)
  3. Each feature is then preprocessed in this manner:
  • Numerical features: Impute missing values with mean, then standardize the feature (removing the mean and dividing by the variance)
  • ‘High’ categorical features: Impute missing values with the value ‘missing’, then perform one-hot encoding.
  • ‘Low’ categorical features: Impute missing values with the value ‘missing’, then perform ordinal encoding (convert each unique string value into an integer. In the example of a Gender column— ‘Male’ is encoded as 0 and ‘Female’ 1.)
  • Fit the training dataset on each algorithm.
  • Test each algorithm on the testing set. By default, the metrics are adjusted R-squared, R-squared, root-mean-squared error, and the time taken.
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
model_dictionary = reg.provide_models(X_train, X_test, y_train, y_test)
models

Here is the result.

| Model                         |   Adjusted R-Squared |   R-Squared |   RMSE |   Time Taken |
|:------------------------------|---------------------:|------------:|-------:|-------------:|
| ExtraTreesRegressor | 0.38 | 0.52 | 54.22 | 0.17 |
| OrthogonalMatchingPursuitCV | 0.37 | 0.52 | 54.39 | 0.01 |
| Lasso | 0.37 | 0.52 | 54.46 | 0.01 |
| LassoLars | 0.37 | 0.52 | 54.46 | 0.01 |
| LarsCV | 0.37 | 0.51 | 54.54 | 0.02 |
| LassoCV | 0.37 | 0.51 | 54.59 | 0.07 |
| PassiveAggressiveRegressor | 0.37 | 0.51 | 54.74 | 0.01 |
| LassoLarsIC | 0.36 | 0.51 | 54.83 | 0.01 |
| SGDRegressor | 0.36 | 0.51 | 54.85 | 0.01 |
| RidgeCV | 0.36 | 0.51 | 54.91 | 0.01 |
| Ridge | 0.36 | 0.51 | 54.91 | 0.01 |
| BayesianRidge | 0.36 | 0.51 | 54.94 | 0.01 |
| LassoLarsCV | 0.36 | 0.51 | 54.96 | 0.02 |
| LinearRegression | 0.36 | 0.51 | 54.96 | 0.01 |
| TransformedTargetRegressor | 0.36 | 0.51 | 54.96 | 0.01 |
| Lars | 0.36 | 0.50 | 55.09 | 0.01 |
| ElasticNetCV | 0.36 | 0.50 | 55.20 | 0.06 |
| HuberRegressor | 0.36 | 0.50 | 55.24 | 0.02 |
| RandomForestRegressor | 0.35 | 0.50 | 55.48 | 0.25 |
| AdaBoostRegressor | 0.34 | 0.49 | 55.88 | 0.08 |
| LGBMRegressor | 0.34 | 0.49 | 55.93 | 0.05 |
| HistGradientBoostingRegressor | 0.34 | 0.49 | 56.08 | 0.20 |
| PoissonRegressor | 0.32 | 0.48 | 56.61 | 0.01 |
| ElasticNet | 0.30 | 0.46 | 57.49 | 0.01 |
| KNeighborsRegressor | 0.30 | 0.46 | 57.57 | 0.01 |
| OrthogonalMatchingPursuit | 0.29 | 0.45 | 57.87 | 0.01 |
| BaggingRegressor | 0.29 | 0.45 | 57.92 | 0.04 |
| XGBRegressor | 0.28 | 0.45 | 58.18 | 0.11 |
| GradientBoostingRegressor | 0.25 | 0.42 | 59.70 | 0.12 |
| TweedieRegressor | 0.24 | 0.42 | 59.81 | 0.01 |
| GammaRegressor | 0.22 | 0.40 | 60.61 | 0.01 |
| RANSACRegressor | 0.20 | 0.38 | 61.40 | 0.12 |
| LinearSVR | 0.12 | 0.32 | 64.66 | 0.01 |
| ExtraTreeRegressor | 0.00 | 0.23 | 68.73 | 0.01 |
| NuSVR | -0.07 | 0.18 | 71.06 | 0.01 |
| SVR | -0.10 | 0.15 | 72.04 | 0.02 |
| DummyRegressor | -0.30 | -0.00 | 78.37 | 0.01 |
| QuantileRegressor | -0.35 | -0.04 | 79.84 | 1.42 |
| DecisionTreeRegressor | -0.47 | -0.14 | 83.42 | 0.01 |
| GaussianProcessRegressor | -0.77 | -0.37 | 91.51 | 0.02 |
| MLPRegressor | -1.87 | -1.22 | 116.51 | 0.21 |
| KernelRidge | -5.04 | -3.67 | 169.06 | 0.01 |

Here’s the full code for regression on a Diabetes dataset.

 
from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np

# Import the Diabetes Dataset
diabetes = datasets.load_diabetes()

# Shuffle the dataset
X, y = shuffle(diabetes.data, diabetes.target, random_state=13)

# Cast the numerical values
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)

# Split into train and test
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

# Running the Lazypredict library and fit multiple regression libraries
# for the same dataset
reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
model_dictionary = reg.provide_models(X_train, X_test, y_train, y_test)
models

Using Lazypredict for Classification

Let’s use Lazypredict for classification. (If you just want the full code, search “full code” in this article.

First, import the necessary libraries.

 from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

Next, we load the data, the Iris dataset, and split it into train and test sets. Here’s what it contains.

The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.

 data = load_iris()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)

Next, we initialize the LazyClassifier object.

# Running the Lazypredict library and fit multiple regression libraries
# for the same dataset
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)

"""
Parameters
----------
verbose : int, optional (default=0)
For the liblinear and lbfgs solvers set verbose to any positive
number for verbosity.
ignore_warnings : bool, optional (default=True)
When set to True, the warning related to algorigms that are not able to run are ignored.
custom_metric : function, optional (default=None)
When function is provided, models are evaluated based on the custom evaluation metric provided.
prediction : bool, optional (default=False)
When set to True, the predictions of all the models models are returned as dataframe.
classifiers : list, optional (default="all")
When function is provided, trains the chosen classifier(s).
"""

Then, we call the lazy regressor'sfitmethod, which fits ltiple classification algorithms with the lazypredict library. This step took 1 second in total for this small dataset.

(Search the keyword “under the hood, the fit method” to jump to the section where I explain what fit does.)

 models,predictions = clf.fit(X_train, X_test, y_train, y_test)

Lastly, we can see how each model performs using provide_models. This reports the accuracy, balanced accuracy, ROC AUC, and F1 score on the test set.

# Calculate performance of all models on test dataset
model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test)
models

Here is the full result.

| Model                         |   Accuracy |   Balanced Accuracy | ROC AUC   |   F1 Score |   Time Taken |
|:------------------------------|-----------:|--------------------:|:----------|-----------:|-------------:|
| LinearDiscriminantAnalysis | 0.99 | 0.99 | | 0.99 | 0.01 |
| AdaBoostClassifier | 0.97 | 0.98 | | 0.97 | 0.13 |
| PassiveAggressiveClassifier | 0.97 | 0.98 | | 0.97 | 0.01 |
| LogisticRegression | 0.97 | 0.98 | | 0.97 | 0.01 |
| GaussianNB | 0.97 | 0.98 | | 0.97 | 0.01 |
| SGDClassifier | 0.96 | 0.96 | | 0.96 | 0.01 |
| RandomForestClassifier | 0.96 | 0.96 | | 0.96 | 0.19 |
| QuadraticDiscriminantAnalysis | 0.96 | 0.96 | | 0.96 | 0.01 |
| Perceptron | 0.96 | 0.96 | | 0.96 | 0.01 |
| LGBMClassifier | 0.96 | 0.96 | | 0.96 | 0.30 |
| ExtraTreeClassifier | 0.96 | 0.96 | | 0.96 | 0.01 |
| BaggingClassifier | 0.95 | 0.95 | | 0.95 | 0.03 |
| ExtraTreesClassifier | 0.95 | 0.95 | | 0.95 | 0.13 |
| XGBClassifier | 0.95 | 0.95 | | 0.95 | 0.19 |
| DecisionTreeClassifier | 0.95 | 0.95 | | 0.95 | 0.01 |
| LinearSVC | 0.95 | 0.95 | | 0.95 | 0.01 |
| CalibratedClassifierCV | 0.95 | 0.95 | | 0.95 | 0.04 |
| KNeighborsClassifier | 0.93 | 0.94 | | 0.93 | 0.01 |
| NuSVC | 0.93 | 0.94 | | 0.93 | 0.01 |
| SVC | 0.93 | 0.94 | | 0.93 | 0.01 |
| RidgeClassifierCV | 0.91 | 0.91 | | 0.91 | 0.01 |
| NearestCentroid | 0.89 | 0.90 | | 0.89 | 0.01 |
| LabelPropagation | 0.89 | 0.90 | | 0.90 | 0.01 |
| LabelSpreading | 0.89 | 0.90 | | 0.90 | 0.01 |
| RidgeClassifier | 0.88 | 0.89 | | 0.88 | 0.01 |
| BernoulliNB | 0.79 | 0.75 | | 0.77 | 0.01 |
| DummyClassifier | 0.27 | 0.33 | | 0.11 | 0.01 |

Here is the full code for classification.


from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

# Load dataset
data = load_breast_cancer()
X = data.data
y= data.target

# Split data into train and test with a 90:10 ratio
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.1,random_state =123)

# Initialize the Lazypredict library
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)

# Fit all classification algorithms on training dataset
models,predictions = clf.fit(X_train, X_test, y_train, y_test)

# Calculate performance of all models on test dataset
model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test)
models

Do I recommend lazypredict?

If you get to install it, lazypredict is very simple to use. Its syntax is very close to scikit-learn, making the learning curve very gentle.

But it has some critical weaknesses.

  1. Difficult installation: Many reported difficulties in installing the libraries because the developers did not add the requirements.txt that document their required dependencies.
  2. Limited documentation: I had to comb through the source code to find out how the preprocessing runs. This is not ideal. I also do not know the hyperparameters used to perform each of the classification and regression tasks.
  3. Limited customizability: I still have yet to find ways to customize the preprocessing steps.
  4. Unclear how to use the model after lazypredict: Once you’re done with the lazypredict library, you’d ideally want to select the best algorithm. Lazypredict does not make this easy since you do not have an easy way of exporting the best algorithm.

Main takeaway

Lazypredict’s critical weaknesses limit its utility. It is nice, but it’s still underdeveloped.

I’d strongly recommend you check out other AutoML libraries that are superior in terms of documentation and customizability.

Here are some alternatives.

  1. TPOT (Check out how to use TPOT here)
  2. Auto-Sklearn
  3. Auto-ViML
  4. H2O AutoML
  5. Auto-Keras
  6. MLBox
  7. Hyperopt Sklearn
  8. AutoGluon
Data scientist + Robots = Magic. Photo by Andy Kelly on Unsplash

I’m Travis Tang, a data scientist in Tech. I share how you can use open-sourced libraries on Medium. I also share data analytics and science tips on LinkedIn daily. Follow me if you like this content.


Lazypredict: Run all sklearn algorithms with a line of code was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->