Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

50+ Python 3 Tips & Tricks
Programming

50+ Python 3 Tips & Tricks

Last Updated on May 20, 2020 by Editorial Team

Author(s):Β Eyal Trabelsi

Here is a list of python tips and tricks to help you write an elegantΒ Python 3Β code! This article is divided into different kinds of tricks:

  • Python iterable tricks.
  • Python comprehension tricks.
  • Python unpacking tricks.
  • Python itertools tricks.
  • Python collections tricks.
  • Python other tricks.
  • Python easter eggs.
  • Python tricks to understand the context.

1. Python Iterables tricks

Creating a sequence of numbers (zero to ten with skips).

>>> range(0,10,2)
[0, 2, 4, 6, 8]         

Summing a sequence of numbers (calculating the sum of zero to ten with skips).

>>> l = range(0,10,2)
>>> sum(l)
20

Checking whether any element in the sequence is Truthful (checking whether any elements between zero and ten with skips are even).

>>> any(a % 2==0 for a in range(0,10,2))
True

Checking whether all elements in the sequence are Truthful (checking whether all elements between zero and ten with skips are even).


>>> all(a % 2==0 for a in range(0,10,2))
True

Cumulative summing a sequence of numbers (calculating the cumulative sum of zero to ten with skips).

>>> import numpy as np
>>> res = list(np.cumsum(range(0,10,2)))
>>> res
[ 0,  2,  6, 12, 20]

Given each iterable we construct a tuple by adding an index.

>>> a = ['Hello', 'world', '!']
>>> list(enumerate(a))
[(0, 'Hello'), (1, 'world'), (2, '!')]

Concatenating iterable to a single string.

>>> a = ["python","really", "rocks"]
>>> " ".join(a)
'python really rocks'

Combining two iterable of tuples or pivot nested iterables.

# Combining two iterables
>>> a = [1, 2, 3]
>>> b = ['a', 'b', 'c']
>>> z = zip(a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]

# Pivoting list of tuples
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]

Getting min/max from iterable (with/without specific function).

# Getting maximum from iterable
>>> a = [1, 2, -3]
>>> max(a)
2

# Getting maximum from iterable
>>> min(a)
1

# Bot min/max has key value to allow to get maximum by appliing function
>>> max(a,key=abs)
3

Getting sorted iterable (can sort by β€œcompare” function).

>>> a = [1, 2, -3]
>>> sorted(a)
[-3, 1, 2]

>>> sorted(a,key=abs)
[1, 2, -3]

Splitting a single string to list.

>>> s = "a,b,c"
>>> s.split(",")
["a", "b", "c"]

Initializing a list filled with some repetitive number.

>> [1]* 10
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Merging/Upserting two dictionaries.

>>> a = {"a":1, "b":1}
>>> b = {"b":2, "c":1}
>>> a.update(b)
>>> a
{"a":1, "b":2, "c":1}

Naming and saving slices of iterables.


# Naming slices (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

Finding the index of an item in a list.

>>> a = ["foo", "bar", "baz"]
>>> a.index("bar")
1

Finding the index of the min/max item in an iterable.

>>> a = [2, 3, 1]
>>> min(enumerate(a),key=lambda x: x[1])[0]
2

Rotating iterable by k elements.

>>> a = [1, 2, 3, 4]
>>> k = 2
>>> a[-2:] + a[:-2]
[3, 4, 1, 2]

Removing useless characters on the end/start/both of your string.

>>> name = "//George//"
>>> name.strip("/")
'George'
>>> name.rstrip("/")
'//George'
>>> name.lstrip("/")
'George//'

Reversing an iterable wit order (string, list etc).

# Reversing string
>>> s = "abc"
>>> s[::-1]
"cba"

# Reversing list
>>> l = ["a", "b", "c"]
>>> l[::-1]
["c", "b", "a"]

2. Python branching tricks

Multiple predicates short-cut.

>>> n = 10
>>> 1 < n < 20
True

For-else construct useful when searched for something and find it.

# For example assume that I need to search through a list and process each item until a flag item is found and 
# then stop processing. If the flag item is missing then an exception needs to be raised.

for i in mylist:
    if i == theflag:
        break
    process(i)
else:
    raise ValueError("List argument missing terminal flag.")

Trenary operator.

>>> "Python ROCK" if True else " I AM GRUMPY"
"Python ROCK"

Try-catch-else construct.

try:
  foo() 
except Exception: 
  print("Exception occured")
else:
  print("Exception didnt occur")
finally:
  print("Always gets here")

While-else construct.

i = 5

while i > 1:
    print("Whil-ing away!")
    i -= 1
    if i == 3:
        break
else:
    print("Finished up!")

3. Python comprehensions tricks

List comprehension.

>>> m = [x ** 2 for x in range(5)]
>>> m
[0, 1, 4, 9, 16]

Set comprehension.

>>> m = {x ** 2 for x in range(5)}
>>> m
{0, 1, 4, 9, 16}

Dict comprehension.

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Generator comprehension.

# A generator comprehension is the lazy version of a list comprehension.
>>> m = (x ** 2 for x in range(5))
>>> m
<generator object <genexpr> at 0x108efe408>
>>> list(m)
[0, 1, 4, 9, 16]

>>> m = (x ** 2 for x in range(5))
>>> next(m)
0
>>> list(m)
[1, 4, 9, 16]

List comprehension with the current and previous value.

>>> a = [1, 2, 4,2]
>>> [y - x for x,y in zip(a,a[1:])]
[1, 2, -2]

Note: all comprehension can use predicates with if statement.

4. Python unpacking tricks

Unpack variables from iterable.

# One can unpack all iterables (tuples, list etc)
>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)

>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)

Swap variables values.

>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)

Unpack variables from iterable without indicating all elements.

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

Unpack variables using the splat operator.

>>> def test(x, y, z):
>>>     print(x, y, z)  
>>> res = test(*[10, 20, 30]) 
10 20 30
>>> res = test(**{'x': 1, 'y': 2, 'z': 3} )
10 20 30  

5. Python Itertools tricks

Flatten iterables.

>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]

Creating cartesian products from iterables.

>>> for p in itertools.product([1, 2, 3], [4, 5]):
>>>    print(''.join(str(x) for x in p))

(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)

Creating permutation from iterable.

>>> for p in itertools.permutations([1, 2, 3, 4]):
>>>      print(''.join(str(x) for x in p))
123
132
213
231
312
321

Creating ngram from iterable.

>>> from itertools import islice
>>> def n_grams(a, n):
...     z = (islice(a, i, None) for i in range(n))
...     return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

Combining two iterables of tuples with padding or pivot nested iterable with padding.

>>> import itertools as it
>>> x = [1, 2, 3, 4, 5]
>>> y = ['a', 'b', 'c']
>>> list(zip(x, y))
[(1, 'a'), (2, 'b'), (3, 'c')]

>>> list(it.zip_longest(x, y))
[(1, 'a'), (2, 'b'), (3, 'c'), (4, None), (5, None)]

Creating a combination of k things from an iterable of n

>>> import itertools
>>> bills = [20, 20, 20, 10, 10, 10, 10, 10, 5, 5, 1, 1, 1, 1, 1]
>>> list(itertools.combinations(bills, 3))
[(20, 20, 20), (20, 20, 10), (20, 20, 10), ... ]

CreatingΒ accumulated results of iterable given a function

>>> import itertools
>>> list(itertools.accumulate([9, 21, 17, 5, 11, 12, 2, 6], min))
[9, 9, 9, 5, 5, 5, 2, 2]

Creating an iterator that returns elements from the iterable as long as the predicate is true

>>> import itertools
>>> itertools.takewhile(lambda x: x < 3, [0, 1, 2, 3, 4])  
[0, 1, 2]

>>> it.dropwhile(lambda x: x < 3, [0, 1, 2, 3, 4])
[3, 4]

Creating an iterator that filters elements from iterable returning only those for which the predicate isΒ _False_

>>> import itertools
# keeping only false values
>>> list(itertools.filterfalse(bool, [None, False, 1, 0, 10]))
[None, False, 0]

CreatingΒ an iterator that computes the function using arguments obtained from the iterable of iterables

>>> import itertools 
>>> import operator
>>> a = [(2, 6), (8, 4), (7, 3)]
>>> list(itertools.starmap(operator.mul, a))
[12, 32, 21]

6. Python collections tricks

Set basic operations.

>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

Counter data structure (an unordered collection where elements are stored as dictionary keys and their counts are stored as dictionary values).

import collections

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

Default dictionary structure (a subclass of dictionary that retrieves default value when non-existing key getting accessed).

>>> import collections
>>> m = collections.defaultdict(int)
>>> m['a']
0

>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'

>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'

>>> m = collections.defaultdict(list)
>>> m['a']
[]

Ordered dict structure (a subclass of dictionary that keeps order).

>>> from collections import OrderedDict

>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b')
>>> ''.join(d.keys())
'acdeb'

>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'

DequesΒ structure (_Deques are a generalization of stacks and queues)._

>>> import collection
>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

>>> last_three = collections.deque(maxlen=3)
>>> for i in range(4):
...     last_three.append(i)
...     print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4

Named tuples structure (create tuple-like objects that have fields accessible by attribute lookup as well as being indexable and iterable).

>>> import collections
>>> Point = collections.namedtuple('Point', ['x', 'y'])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0

Use A Dictionary To Store A Switch.


>>> func_dict = {'sum': lambda x, y: x + y, 'subtract': lambda x, y: xβ€Š-β€Šy}
>>> func_dict['sum'](9,3)
12
>>> func_dict['subtract'](9,3)
6

Data classes structure

>>> from dataclasses import dataclass

>>> @dataclass
>>> class DataClassCard:
>>>    rank: str
>>>    suit: str

>>> queen_of_hearts = DataClassCard('Q', 'Hearts')
>>> queen_of_hearts.rank
'Q'
>>> queen_of_hearts
DataClassCard(rank='Q', suit='Hearts')
>>> queen_of_hearts == DataClassCard('Q', 'Hearts')
True

7. Other Python tricks

Generating uuid.

# This creates a randomized 128-bit number that will almost certainly be unique.
# In fact, there are over 2ΒΉΒ²Β² possible UUIDs that can be generated. That’s over five undecillion (or 5,000,000,000,000,000,000,000,000,000,000,000,000).

>>> import uuid
>>> user_id = uuid.uuid4()
>>> user_id 
UUID('7c2faedd-805a-478e-bd6a-7b26210425c7')

Memoization using LRU cache.

import functools

@functools.lru_cache(maxsize=128)
def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fibonacci(n - 1) + fibonacci(n - 2)

Suppression of expressions

>>> from contextlib import suppress
>>> with contextlib.suppress(ZeroDivisionError):
>>>     10/0
# No exception raised

An elegant way to deal with a file path (3.4β‰₯)

>>> from pathlib import Path
>>> data_folder = Path("source_data/text_files/")

# Path calculation and metadata
>>> file_to_open = data_folder / "raw_data.txt"
>>> file_to_open.name
"raw_data.txt"
>>> file_to_open.suffix
"txt"
>>>file_to_open.stem
"raw_data"

# Files functions                       
>>> f = open(file_to_open)
>>> f.read()
# content of the file                      
>>> file_to_open.exists()
True

Creating decoratorΒ to separate concerns

>>>from functools import wraps

>>>def add_sandwich(wrapped):
>>>    @wraps(wrapped)
>>>    def wrapper(*args, **kwargs):
>>>        return wrapped(*args, **kwargs) + ' sandwich'
>>>    return wrapper

>>>@add_sandwich
>>>def ham():
>>>    return 'ham'

>>>ham()
'ham sandwich'

Using yield to create a simple iterator

>>> def foo(lst):
>>>   for x in lst:
>>>       yield x
>>>       yield x*2

>>> a = [1, 3]
>>> list(foo(a))
[1, 2, 3, 6]

8. Python easter eggs

Anti-gravity

import antigravity

antigravity.fly()

The Zen of Python

>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one and preferably only one obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea let's do more of those!

ListΒ object attributes

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__']
>>> dir("Hello World")
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

Summary

If you think I should add any more or have suggestions please do let me know in the comments. I’ll keep on updating this blog.


50+ Python 3 Tips & Tricks was originally published in Towards AIβ€Šβ€”β€ŠMultidisciplinary Science JournalΒ on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Feedback ↓