Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Querying AI and Cloud Trends: Azure and OpenAI Growth Slows, Amazon Growth Peaked in June
Latest   Machine Learning

Querying AI and Cloud Trends: Azure and OpenAI Growth Slows, Amazon Growth Peaked in June

Last Updated on September 2, 2024 by Editorial Team

Author(s): Jonathan Bennion

Originally published on Towards AI.

Cutting through the AI hype to query actual developer usage (as new repos, so with presumptions) for prioritization of safety tools and partnerships.

TLDR (with caveats noted below):

  • Public AI repos now appear as linear growth, not exponential (surge in March 2024 followed by rapid decline, now slower but steady).
  • Azure/OpenAI public repo dominance: Azure shows 20x more new repos each month than the next leading hyperscaler, with OpenAI usage also dominating.
  • Amazon Bedrock public repo growth may have peaked in June 2024 (slightly exponential until then).
Image created by author from code below

Introduction — what did I query?

I leveraged GitHub repository creation data to analyze adoption trends in AI and cloud computing adoption. Code below, analysis follows.

Note on caveats:

Despite obvious bias and limitations (public packages and public repos containing only the names of these packages), this method offers a unique view to developer adoption. Google Cloud and/or Microsoft formerly enabled querying of code within pages, which would have enabled a count of distinct import statements, but at some point recently this was disabled, therefore only leaving the repo names as queryable.

While imperfect, looking at repo creation provides enough data to challenge prevailing market narratives.

First, the notebook setup:

It’s only possible to use Google Cloud Platform (GCP) and BigQuery to access and query the GitHub data archive, so installed these packages (used colab initially, now parked in github).

# Install packages 
!pip install -q pandas seaborn matplotlib google-cloud-bigquery

# Imports
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from google.cloud import bigquery
from google.oauth2 import service_account

Query from GCP out of BigQuery:

The following SQL extracts relevant data by categorizing repositories related to specific AI and cloud technologies, then aggregates repository creation counts by creation month.

Dependent on some manual investigation of the right python package names.

query = """
WITH ai_repos AS (
SELECT
repo.name AS repo_name,
EXTRACT(DATE FROM created_at) AS creation_date,
CASE
WHEN LOWER(repo.name) LIKE '%bedrock%' THEN 'bedrock'
WHEN LOWER(repo.name) LIKE '%vertex%' THEN 'vertex'
WHEN LOWER(repo.name) LIKE '%openai%' THEN 'openai'
WHEN LOWER(repo.name) LIKE '%anthropic%' THEN 'anthropic'
WHEN LOWER(repo.name) LIKE '%langchain%' THEN 'langchain'
WHEN LOWER(repo.name) LIKE '%azure%' THEN 'azure'
WHEN LOWER(repo.name) LIKE '%llamaindex%' THEN 'llamaindex'
WHEN LOWER(repo.name) LIKE '%neo4j%' THEN 'neo4j'
WHEN LOWER(repo.name) LIKE '%pymongo%' THEN 'pymongo'
WHEN LOWER(repo.name) LIKE '%elasticsearch%' THEN 'elasticsearch'
WHEN LOWER(repo.name) LIKE '%boto3%' THEN 'boto3'
WHEN LOWER(repo.name) LIKE '%ayx%' THEN 'ayx'
WHEN LOWER(repo.name) LIKE '%snowflake-connector-python%' THEN 'snowflake'
WHEN LOWER(repo.name) LIKE '%c3-toolset%' THEN 'c3ai'
WHEN LOWER(repo.name) LIKE '%dataiku-api-client%' THEN 'dataiku'
WHEN LOWER(repo.name) LIKE '%salesforce-einstein-vision-python%' THEN 'salesforce_einstein'
WHEN LOWER(repo.name) LIKE '%qlik-py-tools%' THEN 'qlik'
WHEN LOWER(repo.name) LIKE '%palantir-foundry-client%' THEN 'palantir_foundry'
WHEN LOWER(repo.name) LIKE '%cuda-python%' THEN 'nvidia_cuda'
WHEN LOWER(repo.name) LIKE '%openvino%' THEN 'intel_openvino'
WHEN LOWER(repo.name) LIKE '%clarifai%' THEN 'clarifai'
WHEN LOWER(repo.name) LIKE '%twilio%' THEN 'twilio'
WHEN LOWER(repo.name) LIKE '%oracleai%' THEN 'oracle_ai'
ELSE 'other'
END AS keyword_category
FROM
`githubarchive.day.20*`
WHERE
_TABLE_SUFFIX >= '240101'
AND _TABLE_SUFFIX NOT LIKE '%view%'
AND type = 'CreateEvent'
AND repo.name IS NOT NULL
AND (
LOWER(repo.name) LIKE '%bedrock%'
OR LOWER(repo.name) LIKE '%vertex%'
OR LOWER(repo.name) LIKE '%openai%'
OR LOWER(repo.name) LIKE '%anthropic%'
OR LOWER(repo.name) LIKE '%langchain%'
OR LOWER(repo.name) LIKE '%azure%'
OR LOWER(repo.name) LIKE '%llamaindex%'
OR LOWER(repo.name) LIKE '%neo4j%'
OR LOWER(repo.name) LIKE '%pymongo%'
OR LOWER(repo.name) LIKE '%elasticsearch%'
OR LOWER(repo.name) LIKE '%boto3%'
OR LOWER(repo.name) LIKE '%ayx%'
OR LOWER(repo.name) LIKE '%snowflake-connector-python%'
OR LOWER(repo.name) LIKE '%c3-toolset%'
OR LOWER(repo.name) LIKE '%dataiku-api-client%'
OR LOWER(repo.name) LIKE '%salesforce-einstein-vision-python%'
OR LOWER(repo.name) LIKE '%qlik-py-tools%'
OR LOWER(repo.name) LIKE '%palantir-foundry-client%'
OR LOWER(repo.name) LIKE '%cuda-python%'
OR LOWER(repo.name) LIKE '%openvino%'
OR LOWER(repo.name) LIKE '%clarifai%'
OR LOWER(repo.name) LIKE '%twilio%'
OR LOWER(repo.name) LIKE '%oracleai%'
)
)

SELECT
FORMAT_DATE('%Y-%m', creation_date) AS month,
keyword_category,
COUNT(DISTINCT repo_name) AS new_repo_count
FROM
ai_repos
GROUP BY
month, keyword_category
ORDER BY
month, keyword_category
"""

Then extract, load, transform, etc..

Just created a pivot table with the right format..

# Query output to DF, create pivot
df = client.query(query).to_dataframe()
df['month'] = pd.to_datetime(df['month'])
df_pivot = df.pivot(index='month', columns='keyword_category', values='new_repo_count')
df_pivot.sort_index(inplace=True)

# Remove the current month to preserve data trend by month
df_pivot = df_pivot.iloc[:-1]

Next, plotted the data:

First time I’d tried this, I’d had to throw Azure to a secondary axis since it was 20x that of the next repo.

# Define color palette
colors = sns.color_palette("husl", n_colors=len(df_pivot.columns))

# Create plot
fig, ax1 = plt.subplots(figsize=(16, 10))
ax2 = ax1.twinx()

lines1 = []
labels1 = []
lines2 = []
labels2 = []

# Plot each keyword as a line, excluding 'azure' for separate axis
for keyword, color in zip([col for col in df_pivot.columns if col != 'azure'], colors):
line, = ax1.plot(df_pivot.index, df_pivot[keyword], linewidth=2.5, color=color, label=keyword)
lines1.append(line)
labels1.append(keyword)

# Plot 'azure' on the secondary axis
if 'azure' in df_pivot.columns:
line, = ax2.plot(df_pivot.index, df_pivot['azure'], linewidth=2.5, color='red', label='azure')
lines2.append(line)
labels2.append('azure')

# Customize the plot
ax1.set_title("GitHub Repository Creation Trends by AI Keyword", fontsize=24, fontweight='bold', pad=20)
ax1.set_xlabel("Repo Creation Month", fontsize=18, labelpad=15)
ax1.set_ylabel("New Repository Count (Non-Azure)", fontsize=18, labelpad=15)
ax2.set_ylabel("New Repository Count (Azure)", fontsize=18, labelpad=15)

# Format x-axis to show dates nicely
ax1.xaxis.set_major_formatter(DateFormatter("%Y-%m"))
plt.setp(ax1.xaxis.get_majorticklabels(), rotation=45, ha='right')

# Adjust tick label font sizes
ax1.tick_params(axis='both', which='major', labelsize=14)
ax2.tick_params(axis='both', which='major', labelsize=14)

# Adjust layout
plt.tight_layout()

# Create a single legend for both axes
fig.legend(lines1 + lines2, labels1 + labels2, loc='center left', bbox_to_anchor=(1.05, 0.5), fontsize=12)

# Adjust subplot parameters to give specified padding
plt.subplots_adjust(right=0.85)

Results were interesting — since each month shows new repos created, Azure was exponential until March 2024, then declined quickly — is now linear growth since May 2024.

Image created by author from code above

Re-plotted the data for clarity on smaller movements:

With the top 3 repos removed, it’s easier to see the scale — Amazon Bedrock clearly shows steadier adoption but appears to peak in June 2024. Note that some packages are not meant to show adoption, since these are public packages (e.g. Snowflake, Nvidia CUDA), and public repos.

# Isolate the top 3 to remove
top_3 = df_pivot.mean().nlargest(3).index
df_pivot_filtered = df_pivot.drop(columns=top_3)

fig, ax = plt.subplots(figsize=(16, 10))

for keyword, color in zip(df_pivot_filtered.columns, colors[:len(df_pivot_filtered.columns)]):
ax.plot(df_pivot_filtered.index, df_pivot_filtered[keyword], linewidth=2.5, color=color, label=keyword)

ax.set_title("GitHub Repository Creation Trends by AI Keyword (Excluding Top 3 Packages)", fontsize=24, fontweight='bold', pad=20)
ax.set_xlabel("Repo Creation Month", fontsize=18, labelpad=15)
ax.set_ylabel("New Repository Count", fontsize=18, labelpad=15)

ax.xaxis.set_major_formatter(DateFormatter("%Y-%m"))
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45, ha='right')

ax.tick_params(axis='both', which='major', labelsize=14)

# Adjust layout
plt.tight_layout()

# Place legend outside the plot
ax.legend(loc='center left', bbox_to_anchor=(1.05, 0.5), fontsize=12)

# Adjust subplot parameters to give specified padding
plt.subplots_adjust(right=0.85)
plt.show()
Image created by author from code above

Takeaways:

  • Very large disparity between the smaller packages and those from ‘Big Tech’.
  • Azure and OpenAI dominate but growth is slowed.
  • Amazon may have peaked in June 2024.

More to come, stay tuned on more parts to this analysis (follow me for more updates)

FYI the dataframe is below, showing where obvious package names might not reflect the entire usage of the tool (e.g. Nvidia, Snowflake) — note (again) the many biases and caveats (one repo might contain x scripts etc), so this assumes a new (and public) repo is growth.

Image created by author from the df for plotting the above plots (raw data).

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->