Master LLMs with our FREE course in collaboration with Activeloop & Intel Disruptor Initiative. Join now!

Publication

Fair Classification with Adversarial Debiasing
Artificial Intelligence   Latest   Machine Learning

Fair Classification with Adversarial Debiasing

Last Updated on November 5, 2023 by Editorial Team

Author(s): Lorenzo Pastore

Originally published on Towards AI.


Photo by Sushil Nash on Unsplash

In this article my colleague Raffaele Anselmo and I analyze a binary classification problem on income prediction in terms of classification and fairness metrics and we propose a fair classifier based on Adversarial Debiasing, along with a Hyperparameters Optimization (HPO).

Git: https://github.com/LorenzoPastore/Adversarial-Fair-Classification

Existing notions of fairness in the machine learning literature are largely inspired by the concept of discrimination in social sciences and law. These notions call for parity (i.e. equality) in treatment, in impact, or both [1]. A decision making process suffers from disparate treatment if its decisions are (partly) based on the subject’s sensitive attribute… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓