Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Customer Segmentation and Time Series Forecasting Based on Sales Data #2/3
Data Science   Latest   Machine Learning

Customer Segmentation and Time Series Forecasting Based on Sales Data #2/3

Last Updated on October 5, 2024 by Editorial Team

Author(s): Naveen Malla

Originally published on Towards AI.

Customer Segmentation and Time Series Forecasting Based on Sales Data #2/3

This is the second article in a 3-part series. In the first part, I covered some initial data analysis steps you can take before diving into the actual Customer Segmentation. You don’t have to read that before this one, but it’ll give you some great insights and set you up for the more exciting stuff we’re about to cover.

Customer Segmentation and Time Series Forecasting Based on Sales Data #1/3

project that got me an ml internship

pub.towardsai.net

In this part, we’ll look into segmenting customers into clusters and coming up with some marketing strategies for each cluster to maximize returns.

🗂️ Creating a New Dataset with Engineered Features for Customer Analysis

In the last article, we engineered some features from the original dataset to gain deeper insights. Now, we’ll create a new dataset using those features, which will serve as a base for segmentation.


avg_order_value = df.groupby('customer_number')['revenue'].mean().reset_index()
avg_order_value.columns = ['customer_number', 'avg_order_value']
total_quantity = df.groupby('customer_number')['quantity'].sum().reset_index()
total_quantity.columns = ['customer_number', 'total_quantity']


# Merge all features into a single DataFrame
customer_data = total_revenue.merge(avg_order_value, on='customer_number')
customer_data = customer_data.merge(total_quantity, on='customer_number')
customer_data = customer_data.merge(recency, on='customer_number')
customer_data['total_revenue'] = customer_data['total_revenue_x']
customer_data = customer_data.drop(['total_revenue_x', 'total_revenue_y'], axis=1)

# Display the aggregated data
print(customer_data.shape)
print(customer_data.head())

Customer segmentation is the process of dividing a company’s customer base into different groups, or “segments”, based on shared characteristics. The goal is to identify clusters of customers who have similar needs and behaviours.

Photo by freestocks on Unsplash

🎯 Why Is Customer Segmentation Important?

Helps in

  • understanding the customer base better.
  • creating targeted marketing strategies.
  • improving customer service.

⚙️ Building a Model with KMeans Clustering

KMeans is an unsupervised machine learning algorithm that groups similar data points into clusters based on their features. It works by assigning each data point to the nearest cluster center (centroid) and then iteratively adjusting the centroids until the clusters stabilize.

Why KMeans Clustering?

  • Simple to implement.
  • Efficient, fast, and scales well to large datasets.

📈 Selecting Features for Clustering

features = customer_data[['total_revenue', 'avg_order_value', 'total_quantity', 'recency']]

# Normalize the features
scaler = StandardScaler()
normalized_features = scaler.fit_transform(features)

🔍 So how do we decide the number of clusters?

Elbow Method

  1. The KMeans algorithm is run for different values of k (number of clusters), and for each k, the sum of squared distances within each cluster is calculated.
  2. As k increases, the total variance within the cluster decreases, as more more clusters allow for data points to tightly group together.
  3. After a certain point, adding more clusters doesn’t significantly reduce the variance and that is where an “elbow” forms in the graph signifying our optimal numbe of clusters.
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# Elbow method to determine the optimal number of clusters
wcss = []
for i in range(1, 11):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=42)
kmeans.fit(normalized_features)
wcss.append(kmeans.inertia_)

# Plotting the results
plt.figure(figsize=(8, 4))
plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
plt.title('Elbow Method for Optimal Number of Clusters')
plt.xlabel('Number of clusters')
plt.ylabel('Within-Cluster Variance')
plt.show()

The graph shows a sharp decline in the within-cluster variance as k increases from 1 to 3 and then the decrease in variance becomes less significant.

🚥 Validating with Silhouette Score

Just to be sure, I used another metric called Silhouette Score which measures how similar an object is to its cluster compared to other clusters.

Higher the Silhouette Score, better the clustering.

from sklearn.metrics import silhouette_score

# Calculate silhouette scores for a range of cluster numbers
silhouette_scores = []
for n_clusters in range(2, 11):
kmeans = KMeans(n_clusters=n_clusters, init='k-means++', max_iter=300, n_init=10, random_state=42)
cluster_labels = kmeans.fit_predict(normalized_features)
silhouette_avg = silhouette_score(normalized_features, cluster_labels)
silhouette_scores.append(silhouette_avg)

# Plot silhouette scores
plt.figure(figsize=(8, 4))
plt.plot(range(2, 11), silhouette_scores, marker='o', linestyle='--')
plt.title('Silhouette Scores for Different Numbers of Clusters')
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette Score')
plt.show()

There is a significant drop in Silhouette Score after cluster 3 which is the opposite of what we want. So, we can confirm k = 3 and build a model to group the whole customer base into 3 clusters.

🧩 Applying KMeans with 3 Clusters

from sklearn.cluster import KMeans

optimal_clusters = 3
kmeans_3 = KMeans(n_clusters=optimal_clusters, init='k-means++', max_iter=300, n_init=10, random_state=42)
customer_data['cluster_3'] = kmeans_3.fit_predict(normalized_features)

# cluster numbers should start from 1
customer_data['cluster_3'] = customer_data['cluster_3'] + 1
# Analyze the characteristics of each cluster (3 clusters)
cluster_summary_3 = customer_data.groupby('cluster_3').agg({
'total_revenue': ['mean', 'sum'],
'avg_order_value': 'mean',
'total_quantity': 'mean',
'recency': 'mean',
'customer_number': 'count'
}).reset_index()

# Flatten the MultiIndex columns
cluster_summary_3.columns = ['cluster', 'avg_total_revenue', 'sum_total_revenue', 'avg_order_value', 'avg_total_quantity', 'avg_recency', 'customer_count']

📊 Visualizing the Clusters and Their Characteristics

No. of customers in the clusters

plt.figure(figsize=(8, 4))
sns.countplot(data=customer_data, x='cluster_3', palette='viridis')
plt.title('Customer Segmentation - 3 Clusters')
plt.xlabel('Cluster')
plt.ylabel('Number of Customers')
  • The second cluster seems to be the largest.

Average Total Revenue per Cluster

plt.figure(figsize=(8, 4))
sns.barplot(x='cluster', y='avg_total_revenue', data=cluster_summary_3, palette='viridis')
plt.title('Average Total Revenue per Cluster')
plt.xlabel('Cluster')
plt.ylabel('Average Total Revenue')
plt.show()
  • Cluster 1 seems to be the largest in revenue followed by 2 and 3.

Recency by Cluster

plt.figure(figsize=(8, 4))
sns.boxplot(x='cluster_3', y='recency', data=customer_data, palette='viridis')
plt.title('Recency of Orders by Cluster')
plt.xlabel('Cluster')
plt.ylabel('Recency (Days since last order)')
plt.show()
  • Customers in cluster 3 seem to be the least frequent of all.

Displaying the Cluster Summary

print(cluster_summary_3)

Outliers present in the data can skew some of the results. Discussion with stakeholders is necessary to decide how to handle them.

🔎 Individual Cluster Analysis and Tailoring Marketing Strategies

Cluster 1

  • Average Total Revenue: $969.89
  • Sum Total Revenue: $320,976.92
  • Average Order Value: $13.25
  • Average Total Quantity: 1,379.24
  • Average Recency: 5.50 days
  • Customer Count: 333

Analysis

  • High-value customers with high revenue and quantity.
  • These customers are highly engaged with frequent purchases.

Marketing Strategy

  • Upsell and cross-sell products to increase revenue because these customers are already engaged.
  • Offer loyalty programs to encourage continued frequent purchases.

Cluster 2:

  • Average Total Revenue: $696.06
  • Sum Total Revenue: $355,686.77
  • Average Order Value: $12.23
  • Average Total Quantity: 1,007.60
  • Average Recency: 7.29 days
  • Customer Count: 511

Analysis

  • Moderate spending customers with steady purchases.
  • These customers are less frequent than Cluster 1 but still show regular engagement.

Marketing Strategy

  • Implementing a retention campaign to make sure these customers are engaged.
  • Referral programs. Although it seems like it should be a general strategy, it can be more beneficial from this cluster in my opinion. (Give it a thought)

Cluster 3:

  • Average Total Revenue: $557.54
  • Sum Total Revenue: $86,976.31
  • Average Order Value: $10.76
  • Average Total Quantity: 824.18
  • Average Recency: 27.24 days
  • Customer Count: 156

Analysis

  • Low-spending customers who are also less frequent.
  • These customers are at a higher risk of churning. (Churn: When a customer stops purchasing from a business)

Marketing Strategy

  • Gather feedback, maybe through surveys(with well-framed questions) to understand why these customers are not purchasing frequently.
  • Launching a re-engagement campaign with special offers and discounts.

We will look into using the concepts of ⏳ Time Series Forecasting to predict the sales of the products for the next 3 months in the next article. Stay tuned! 🚀

There is more analysis and code that I put in Appendix section of the notebook so as to not make this too long. Star the repo for future reference here:

GitHub – naveen-malla/Customer-Segmentation-and-SKU-Forecasting: This repo contains code for…

This repo contains code for performing customer segmentation and sales forecast prediction on a company's sales data. …

github.com

If you enjoyed this post, please consider

  • holding the clap button for a few seconds (it goes up to 50) and
  • following me for more updates.

It gives me the motivation to keep going and helps the story reach more people like you. I share stories every week about machine learning concepts and tutorials on interesting projects. See you next week. Happy learning!

LinkedIn, Medium, GitHub

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->