Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Baby Steps to TensorFlow
Latest   Machine Learning

Baby Steps to TensorFlow

Last Updated on July 25, 2023 by Editorial Team

Author(s): Lawrence Alaso Krukrubo

Originally published on Towards AI.

Tutorial on Creating a Simple TensorFlow Model U+007C Towards AI

Training your first Tensorflow based Neural Network model for Celsius to Fahrenheit conversion

TensorFlow is an open-source machine learning library for research and production. It offers APIs for beginners and experts to develop for desktop, mobile, web, and cloud. See link.

A software library is a set of functions and modules that you can call, through your codes to perform certain tasks.

Before proceeding, I would assume you’re comfortable coding in python and have some basic knowledge about Machine Learning.

multi-dimensional array (tensor) U+007C img_credit

TensorFlow is arguably the most popular Machine Learning library on GitHub. It is based on the concept of a computational graph.

In a computational graph, nodes represent either persistent data or a Math operation, and edges represent the flow of data between nodes. The data that flows through these edges is a multi-dimensional array known as a tensor, hence the library’s name, “TensorFlow”.

nodes represent the rounded shapes and edges are the arrowheads U+007C img_credit

We’ll try to keep things simple here, and only introduce basic concepts.

The problem we would solve is to convert values from Celsius to Fahrenheit using a simple TensorFlow model, where the approximate formula is:

Fahrenheit = Celsius * 1.8 + 32

This means to manually convert 30-degree Celsius to Fahrenheit, all we need do is multiply 30 by 1.8, then add 32 to the result and that gives 86. see link

Of course, it would be simple enough to create a conventional Python function that directly performs this conversion, but that would not be machine learning.

Instead, we’ll give TensorFlow some sample Celsius values and their corresponding Fahrenheit values. Then, we’ll train a model that figures out the above formula through the training process. And we’d use the model to convert arbitrary values from Celsius to Fahrenheit and finally evaluate the model.

Primer:

Neural Networks:

A Neural Network is basically a set of functions which can learn patterns.

visual of a neural network with two hidden layers U+007C img_credit

In traditional programming, we pass in the rules to a program and the data set for that program and the computer returns the answers.
In Machine Learning, we basically pass the answers and as much data as we can about examples (pairs of features and labels) to the computer and the computer figures out the rules to accurately predict or determine the answers to future unseen data.

Import dependencies

First, import TensorFlow as tf for ease of use. We’d also tell it to only display error logs if any.

import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
import numpy as np
import matplotlib.pyplot as plt

Setting up the training data:

Since the task is to create a model that can predict the Fahrenheit values when given Celcius degrees, we shall create two lists for training the model. One for Celsius degrees and the other for corresponding Fahrenheit values.

# Let's create two lists for celsius and fahrenheit using numpycelsius_q = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float)fahrenheit_a = np.array([-40, 14, 32, 46, 59, 72, 100], dtype=float)# Let's iterate through the list and print out the corresponding #valuesfor i,c in enumerate(celsius_q):
print("{} degrees Celsius = {} degrees Fahrenhet".format(c, fahrenheit_a[i]))
>>
-40.0 degrees Celsius = -40.0 degrees Fahrenheit
-10.0 degrees Celsius = 14.0 degrees Fahrenheit
0.0 degrees Celsius = 32.0 degrees Fahrenheit
8.0 degrees Celsius = 46.0 degrees Fahrenheit
15.0 degrees Celsius = 59.0 degrees Fahrenheit
22.0 degrees Celsius = 72.0 degrees Fahrenhet
38.0 degrees Celsius = 100.0 degrees Fahrenhet

Creating the model:

We will use the simplest model we can, a Dense network. For simplicity’s sake, this network will have only one layer and one neuron

Build a layer:

We’ll call the layer L1 and instantiate it using the syntax tf.keras.layers.Dense, with the following configurations:-

. input_shape=[1], this specifies that the input to this layer is a single value, that is the shape is a 1-dimensional array with 1 member.

. units = 1, this specifies the number of neurons in the layer. The number of neurons defines how many internal variables the model would have to try to learn to solve the problem

L1 = tf.keras.layer.Dense(units=1, input_shape=[1])

Assemble layers into the model:

Once layers are defined, we need to assemble them into our model. We shall use the Sequential model definition that takes in a list of layers as the argument. Specifying the calculation order from the input to output.

This model has just a single layer L1

tf.keras.Sequential([L1])

Note that we can build and assemble the layer in one line of code by simply doing:-

model= tf.keras.Sequential(tf.keras.layer.Dense(units=1, input_shape=[1]))

Compile the model with Loss and Optimizer function:

Before training, the model has to be compiled. When compiled, the model is given:

1. Loss Function: A way of measuring the difference between predictions and the desired outcome. (This difference is called the loss)

2. Optimizer Function: A way of adjusting internal values or parameters in a bid to reduce the loss.

measuring the loss to optimize internal parameters.
model.compile(loss= 'mean_squared_error', optimizer= tf.keras.Optimizers.Adam(0.1))

In fact, the act of calculating the current loss and improving it is what training a model (model.fit) is all about.

During training, the optimizer function (in this case Adam Optimizer, which stands for Adaptive Moment Estimation optimizer) is used to calculate adjustments to the model’s internal parameters. For more details about optimizer algorithms, see this article.

TensorFlow uses numerical fine-tuning to adjust these parameters and all this complexity is hidden from us, so we will not go into those details here.

What’s important to know is this:-

The loss function (mean_squared_error) and the optimizer function (Adam) are standard for simple models like this one, but many others are available and it is not necessary to know how they work internally at this point.

In the code cell above there’s a 0.1 value passed to the Adam optimizer. That is the learning rate. The learning rate is simply the size the optimizer function takes when adjusting values within the model. If the learning rate is too small it takes too many iterations to optimize the model and if it’s too large, then accuracy goes down. Finding a good value often involves some trial and error, but it is usually between 0.001 (default) and 0.1.

Train the model:

We train the model by calling the fit() method.

During the training, the model takes in Celsius values and performs some calculation using the current internal variables(called weights), then outputs values which are meant to be the Fahrenheit equivalent.

Since the weights are initially set randomly, the output values will not be close to the correct values. The difference between the output values and desired outcomes will be calculated using the loss function, while the optimizer function determines how the weights should be adjusted to reduce the loss.

This cycle of calculate, compare, adjust is controlled by the fit() method.

history = model.fit(celsius_q, fahrenheit_a, epochs=500, verbose=False)print("Finished training the model")

The first argument to the fit() method is the input(Celcius values), the second argument is the desired output(Fahrenheit values), epochs specifies how many times the training should run and verbose controls how much data should be printed out when the training takes place. In this case, verbose=False means don’t print out any training data.

We save all these output parameters in a variable called history, so that we can call or access these internal values if the need arises, especially if we want to plot the training loss in real-time. Then we train the model.

Display training statistics:

The fit method returns a history object. we can use this object to plot how the loss of our model goes down after each training epoch.

Let’s visualize the training loss using the Matplotlib library.

import matplotlib.pyplot as plt
plt.xlabel('Epoch Number', color='yellow')
plt.ylabel("Loss Magnitude", color='yellow')
plt.plot(history.history['loss'])
plt.xticks(color='white')
plt.yticks(color='white')
plt.show()
As you can see our model improves rapidly at first, then it has a slow, steady improvement till near perfect

Use the model to predict values:

Now that the model has been trained to learn the relationship or patterns between celsius_q and fahrenheit_a, we can use it to predict previously unknown Celsius to Fahrenheit degrees.

So for example, 200 degree Celsius to Fahrenheit as we already know is:-

200 * 1.8 + 32 = 392

Let’s run that using our trained model

model.predict([200])>>
[[393.65097]]
# Our model outputs 393.7, which is very close to the desired.

Let’s define a simple method that creates Celsius degrees and then we use our model to predict the Fahrenheit values of each one and we compare predictions to the desired values, print out these values and finally the Mean_Squared_Error.

def test_model(model):
MSE = []
xx, yy = [], []
for x in range(10, 110, 10):
y_hat = model.predict([x]).astype(float)
y_hat = y_hat[0]
y = x * 1.8 + 32
error_squ = (y_hat - y)**2
MSE.append(error_squ)
print('celsius is {}, Fahrenheit is {}, Model predicted Fahrenheit is {}, Diff_Squared is {}'.format(x, y, y_hat, error_squ ))
MSE = sum(MSE) / len(MSE)
print('Total MSE is {}'.format(MSE))
print(test_model(model))>>
See cell output below
print-out of each prediction, desired value and finally the MSE of only 4.5

To review:

  1. We created a simple model with a Dense layer
  2. We trained it with 3500 examples (7 pairs over 500 epochs)

Our model tuned the internal parameters(weights) in the Dense layer until it was able to return the correct Fahrenheit value for any Celsius value, even those not seen before, using the Loss and Optimizer functions.

Looking at the layer weights:

Finally, let’s print the internal parameters of the Dense layer

print('These are the internal layer variables{}'.format(L1.get_weights()))>>
This prints out:-
These are the internal layer variables: [array([[1.8278279]], dtype=float32), array([28.5018], dtype=float32)]

Notice that the first variable is 1.8, while the second is 28.5 which is relatively close to 32 (remember the formula for converting Celsius to Fahrenheit is Celsius times 1.8 plus 32)

Therefore for a neural network made up of a single neuron and a single input and a single output, the internal maths looks the same as the line formula AKA the Slope intercept form which is of the form:

y = mx + b

Which has the same form as the conversion formula we used above:-

Fahrenheit = 1.8*Celsius + 32

Since the form is the same, the variables should converge on the standard 1.8 and 32, which is what happened.

A little experiment…

Just for fun, let’s complicate things a little, let's add more Dense layers and more neurons, which would mean more internal variables to learn.

# First Dense layer
L1 = tf.keras.layer.Dense(units=4, input_shape=[1])
# Second Dense layer
L2 = tf.keras.layer.Dense(units=4)
# Third Dense Layer
L3 = tf.keras.layer.Dense(units=1)
# Let's assemble all the layers into a Sequential model
model = tf.keras.Sequential([L1, L2, L3])
# Let's compile the model
model.compile(loss='Mean_Squared_Error',Optimizer=tf.keras.optimizers.Adam(0.1))
# Let's train the model
model.fit(celsius_q, fahrenheit_a, epochs=500, verbose=False)
print("Finished training the model")
# Now let's print out the layer variables of each layer
print("These are the L1 variables: {}".format(L1.get_weights()))
print("These are the L2 variables: {}".format(L2.get_weights()))
print("These are the L3 variables: {}".format(L3.get_weights()))
>>
Finished training the model
These are the L1 variables: [array([[0.38865 , 0.16998766, 0.06720579, 0.38802674]], dtype=float32), array([ 3.093483 , 2.9697134, -2.297267 , 3.08295 ], dtype=float32)]
These are the L2 variables: [array([[-0.61909986, -0.42321223, -0.12353817, -1.0181226 ], [-0.8338606 , -0.3931085 , -0.35709453, -0.02496582], [ 0.04785354, 0.83791655, 0.62090117, -0.35727897], [-1.0036206 , -0.4417855 , -0.26475334, -0.7752834 ]], dtype=float32), array([-2.9957104, -3.0123546, -2.1529603, -2.9795303], dtype=float32)]
These are the L3 variables: [array([[-1.1074247 ], [-1.004997 ], [-0.512665 ], [-0.70594513]], dtype=float32), array([2.9236865], dtype=float32)]

We can clearly see that the internal layer variables are not in the slope-intercept form, but are more complex. This added complexity usually results in better prediction output, but the complex is not always better in all cases.

Let’s run the model one more time with our earlier defined test_model method to see if the added layers and neurons improved predictions,

print(test_model(model))>>
This prints out:-
celsius is 10, Fahrenheit is 50.0, Model predicted Fahrenheit is [49.93202209], Diff_Squared is [0.004621]
celsius is 20, Fahrenheit is 68.0, Model predicted Fahrenheit is [67.91150665], Diff_Squared is [0.00783107]
celsius is 30, Fahrenheit is 86.0, Model predicted Fahrenheit is [85.89100647], Diff_Squared is [0.01187959]
celsius is 40, Fahrenheit is 104.0, Model predicted Fahrenheit is [103.87049103], Diff_Squared is [0.01677257]
celsius is 50, Fahrenheit is 122.0, Model predicted Fahrenheit is [121.84999084], Diff_Squared is [0.02250275]
celsius is 60, Fahrenheit is 140.0, Model predicted Fahrenheit is [139.82948303], Diff_Squared is [0.02907604]
celsius is 70, Fahrenheit is 158.0, Model predicted Fahrenheit is [157.80897522], Diff_Squared is [0.03649047]
celsius is 80, Fahrenheit is 176.0, Model predicted Fahrenheit isonclusion[175.78848267], Diff_Squared is [0.04473958]
celsius is 90, Fahrenheit is 194.0, Model predicted Fahrenheit is [193.76795959], Diff_Squared is [0.05384275]
celsius is 100, Fahrenheit is 212.0, Model predicted Fahrenheit is [211.74746704], Diff_Squared is [0.0637729]
Total MSE is [0.02915287]

We can see an amazing improvement.

The more complex model is 99.83% accurate with an MSE of only 0.03

A gentle walk through TensorFlow

Conclusion:

I hope I have been able to take you on a short but interesting introductory walk through the complexities and awesomeness of The TensorFlow machine learning and deep learning library. This is barely scratching the surface. But it’s enough to get you started.

You can find the code cells here on GitHub

But more importantly, go through this free course that covers all these topics in great detail at udacity.com

Cheers!

About Me:

Lawrence is a Data Specialist at Tech Layer, passionate about fair and explainable AI and Data Science. I hold both the Data Science Professional and Advanced Data Science Professional certifications from IBM. I have conducted several projects using ML and DL libraries, I love to code up my functions as much as possible even when existing libraries abound. Finally, I never stop learning and experimenting and yes, I hold several Data Science and AI certifications and I have written several highly recommended articles.

Feel free to find me on:-

Github

Linkedin

Twitter

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->