Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Latest   Machine Learning

Using NLP (Doc2Vec) and Neural Networks (with Keras): Removing Hate Speech and Offensive Tweets

Author(s): Greg Postalian-Yrausquin

Originally published on Towards AI.

This is a great example of how more than one ML step can be used to achieve a goal.

In this exercise, I will combine NLP (Doc2Vec) with binary classification to extract offensive and hate language from a set of tweets.

Doc2Vec is chosen in this case because it is not pretrained, so it does not rely on a previously provided vocabulary (who knows what we might find… and the tweets are filled with typos, etc). Doc2Vec is a good tool because: 1) as I say does not rely on pre-defined vocabulary and 2) it is a “complete” model, it considers the word in the context of its sentence, gives more accurate results than simpler vectorization tools like TF-IDF.

First, let’s import the libraries

import numpy as np
import pandas as pd
import json
pd.options.mode.chained_assignment = None
from io import StringIO
from html.parser import HTMLParser
import re
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
nltkstop = stopwords.words('english')
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
from nltk.stem.snowball import SnowballStemmer
nltk.download('punkt')
snow = SnowballStemmer(language='english')
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import seaborn as sns
import warnings
import tensorflow as tf
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.metrics import classification_report
from sklearn.utils import resample

I have uploaded two datasets, one with a list of possibly offensive tweets and another with a list of generic tweets, with them, I build the dataset to study.

Also, I am uploading several datasets that I use to clean the data from words that bring no or generic meaning like place names, personal names, etc. There are many versions of these available on the internet, they can be found with a simple search. Before uploading them I made sure they made sense and cleaned them.

maindataset = pd.read_csv("labeled_data.csv")
maindataset2 = pd.read_csv("twitter_dataset.csv", encoding = "ISO-8859-1")

countries = pd.read_json("countries.json")
countries["country"] = countries["country"].str.lower()
countries = pd.DataFrame(countries["country"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
countries.columns = ['word']
countries["replacement"] = "xcountryx"

provincies = pd.read_csv("countries_provincies.csv")
provincies1 = provincies[["name"]]
provincies1["name"] = provincies1["name"].str.lower()
provincies1 = pd.DataFrame(provincies1["name"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies1.columns = ['word']
provincies1["replacement"] = "xprovincex"
provincies2 = provincies[["name_alt"]]
provincies2["name_alt"] = provincies2["name_alt"].str.lower()
provincies2 = pd.DataFrame(provincies2["name_alt"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies2.columns = ['word']
provincies2["replacement"] = "xprovincex"
provincies3 = provincies[["type_en"]]
provincies3["type_en"] = provincies3["type_en"].str.lower()
provincies3 = pd.DataFrame(provincies3["type_en"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies3.columns = ['word']
provincies3["replacement"] = "xsubdivisionx"
provincies4 = provincies[["admin"]]
provincies4["admin"] = provincies4["admin"].str.lower()
provincies4 = pd.DataFrame(provincies4["admin"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies4.columns = ['word']
provincies4["replacement"] = "xcountryx"
provincies5 = provincies[["geonunit"]]
provincies5["geonunit"] = provincies5["geonunit"].str.lower()
provincies5 = pd.DataFrame(provincies5["geonunit"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies5.columns = ['word']
provincies5["replacement"] = "xcountryx"
provincies6 = provincies[["gn_name"]]
provincies6["gn_name"] = provincies6["gn_name"].str.lower()
provincies6 = pd.DataFrame(provincies6["gn_name"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
provincies6.columns = ['word']
provincies6["replacement"] = "xcountryx"
provincies = pd.concat([provincies1,provincies2,provincies3,provincies4,provincies5,provincies6], axis=0, ignore_index=True)

currencies = pd.read_json("country-by-currency-name.json")
currencies1 = currencies[["country"]]
currencies1["country"] = currencies1["country"].str.lower()
currencies1 = pd.DataFrame(currencies1["country"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
currencies1.columns = ['word']
currencies1["replacement"] = "xcountryx"
currencies2 = currencies[["currency_name"]]
currencies2["currency_name"] = currencies2["currency_name"].str.lower()
currencies2 = pd.DataFrame(currencies2["currency_name"].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
currencies2.columns = ['word']
currencies2["replacement"] = "xcurrencyx"
currencies = pd.concat([currencies1,currencies2], axis=0, ignore_index=True)

firstnames = pd.read_csv("interall.csv", header=None)
firstnames = firstnames[firstnames[1]>=10000]
firstnames = firstnames[[0]]
firstnames[0] = firstnames[0].str.lower()
firstnames = pd.DataFrame(firstnames[0].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
firstnames.columns = ['word']
firstnames["replacement"] = "xfirstnamex"

lastnames = pd.read_csv("intersurnames.csv", header=None)
lastnames = lastnames[lastnames[1]>=10000]
lastnames = lastnames[[0]]
lastnames[0] = lastnames[0].str.lower()
lastnames = pd.DataFrame(lastnames[0].apply(lambda x: str(x).replace('-',' ').replace('.',' ').replace('_',' ').replace(',',' ').replace(':',' ').split(" ")).explode())
lastnames.columns = ['word']
lastnames["replacement"] = "xlastnamex"

temporaldata = pd.read_csv("temporal.csv")

dictionary = pd.concat([lastnames,temporaldata,firstnames,currencies,provincies,countries], axis=0, ignore_index=True)
dictionary = dictionary.groupby(["word"]).first().reset_index(drop=False)
dictionary = dictionary.dropna()

maindataset

It might be necessary to understand the data a little. From Kaggle:

“count number of CrowdFlower users who coded each tweet (min is 3, sometimes more users coded a tweet when judgments were determined to be unreliable by CF)

hate_speech number of CF users who judged the tweet to be hate speech

offensive_language number of CF users who judged the tweet to be offensive

neither number of CF users who judged the tweet to be neither offensive nor non-offensive

class class label for majority of CF users. 0 — hate speech 1 — offensive language 2 — neither”

With that, I will filter out the column for class and keep only two, if at least one user flag the tweet as offensive or hate speech then it is.

maindataset['hate_speech'] = np.where(maindataset['hate_speech']>0,1,0)
maindataset['offensive_language'] = np.where(maindataset['offensive_language']>0,1,0)

maindataset = maindataset[['hate_speech', 'offensive_language', 'tweet']]
maindataset

Now, I’ll prepare the other dataset (with the clean tweets), and join it to the original one

maindataset2 = maindataset2[['text']]
maindataset2.columns = ['tweet']
maindataset2['hate_speech'] = 0
maindataset2['offensive_language'] = 0
maindataset2 = maindataset2[['hate_speech','offensive_language','tweet']]
maindataset = pd.concat([maindataset,maindataset2], ignore_index=True)

Here I use several functions to clean the text that I like to keep in my belt:

  1. Strip HTML tags
  2. Replace words using the dictionary crafted above
  3. Remove punctuation, double spaces, etc.
class MLStripper(HTMLParser):
def __init__(self):
super().__init__()
self.reset()
self.strict = False
self.convert_charrefs= True
self.text = StringIO()
def handle_data(self, d):
self.text.write(d)
def get_data(self):
return self.text.getvalue()

def strip_tags(html):
s = MLStripper()
s.feed(html)
return s.get_data()

def replace_words(tt, lookp_dict):
temp = tt.split()
res = []
for wrd in temp:
res.append(lookp_dict.get(wrd, wrd))
res = ' '.join(res)
return res

def preprepare(eingang):
ausgang = strip_tags(eingang)
ausgang = eingang.lower()
ausgang = ausgang.replace(u'\xa0', u' ')
ausgang = re.sub(r'^\s*$',' ',str(ausgang))
ausgang = ausgang.replace('|', ' ')
ausgang = ausgang.replace('ï', ' ')
ausgang = ausgang.replace('»', ' ')
ausgang = ausgang.replace('¿', '. ')
ausgang = ausgang.replace('', ' ')
ausgang = ausgang.replace('"', ' ')
ausgang = ausgang.replace("'", " ")
ausgang = ausgang.replace('?', ' ')
ausgang = ausgang.replace('!', ' ')
ausgang = ausgang.replace(',', ' ')
ausgang = ausgang.replace(';', ' ')
ausgang = ausgang.replace('.', ' ')
ausgang = ausgang.replace("(", " ")
ausgang = ausgang.replace(")", " ")
ausgang = ausgang.replace("{", " ")
ausgang = ausgang.replace("}", " ")
ausgang = ausgang.replace("[", " ")
ausgang = ausgang.replace("]", " ")
ausgang = ausgang.replace("~", " ")
ausgang = ausgang.replace("@", " ")
ausgang = ausgang.replace("#", " ")
ausgang = ausgang.replace("$", " ")
ausgang = ausgang.replace("%", " ")
ausgang = ausgang.replace("^", " ")
ausgang = ausgang.replace("&", " ")
ausgang = ausgang.replace("*", " ")
ausgang = ausgang.replace("<", " ")
ausgang = ausgang.replace(">", " ")
ausgang = ausgang.replace("/", " ")
ausgang = ausgang.replace("\\", " ")
ausgang = ausgang.replace("`", " ")
ausgang = ausgang.replace("+", " ")
ausgang = ausgang.replace("=", " ")
ausgang = ausgang.replace("_", " ")
ausgang = ausgang.replace("-", " ")
ausgang = ausgang.replace(':', ' ')
ausgang = ausgang.replace('\n', ' ').replace('\r', ' ')
ausgang = ausgang.replace(" +", " ")
ausgang = ausgang.replace(" +", " ")
ausgang = ausgang.replace('?', ' ')
ausgang = re.sub('[^a-zA-Z]', ' ', ausgang)
ausgang = re.sub(' +', ' ', ausgang)
ausgang = re.sub('\ +', ' ', ausgang)
ausgang = re.sub(r'\s([?.!"](?:\s|$))', r'\1', ausgang)
return ausgang

Clean up the dictionary data

dictionary["word"] = dictionary["word"].apply(lambda x: preprepare(x))
dictionary = dictionary[dictionary["word"] != " "]
dictionary = dictionary[dictionary["word"] != ""]
dictionary = {row['word']: row['replacement'] for index, row in dictionary.iterrows()}

Preparation of the text data to convert: created a new column with the cleaned version of the text. This is what will be converted to vectors. Then I replace the stopwords and words in the dictionary

maindataset["NLPtext"] = maindataset["tweet"]
maindataset["NLPtext"] = maindataset["NLPtext"].str.lower()
maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: preprepare(str(x)))
maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: ' '.join([word for word in x.split() if word not in (nltkstop)]))
maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: replace_words(str(x), dictionary))

The last part of preparing the text is stemming (make “studies”=”study”). This is done in this case, since anyways I am training the model from scratch. I do this because it is likely that some of the offensive language is not even in pre-trained models

def steming(sentence):
words = word_tokenize(sentence)
singles = [snow.stem(plural) for plural in words]
oup = ' '.join(singles)
return oup

maindataset["NLPtext"] = maindataset["NLPtext"].apply(lambda x: steming(x))
maindataset['lentweet'] = maindataset["tweet"].apply(lambda x: len(str(x).split(' ')))
maindataset = maindataset[maindataset['NLPtext'].notna()]
maindataset = maindataset[maindataset['lentweet']>=3]
maindataset = maindataset.reset_index(drop=False)
maindataset

See the difference between the original text and the clean, ready-to-feed to the model one.

Now, we are finally ready to train the Doc2Vec model

trainset = maindataset.sample(frac=1).reset_index(drop=True)
trainset = trainset[(trainset['NLPtext'].str.len() >= 3)]
trainset = trainset.sample(frac=1).reset_index(drop=True)
trainset = trainset[["NLPtext"]]

tagged_data = []
for index, row in trainset.iterrows():
part = TaggedDocument(words=word_tokenize(row[0]), tags=[str(index)])
tagged_data.append(part)
model = Doc2Vec(vector_size=350, min_count=3, epochs=50, window=10, dm=1)
model.build_vocab(tagged_data)
model.train(tagged_data, total_examples=model.corpus_count, epochs=model.epochs)
model.save("d2v.model")
print("Model Saved")

Apply the model and vectorize the tweets (convert text to numbers)

a = []
for index, row in maindataset.iterrows():
nlptext = row['NLPtext']
ids = row['index']
vector = model.infer_vector(word_tokenize(nlptext))
vector = pd.DataFrame(vector).T
vector.index = [ids]
a.append(vector)
textvectors = pd.concat(a)
textvectors

I use this small function for standardization

def properscaler(simio):
scaler = StandardScaler()
resultsWordstrans = scaler.fit_transform(simio)
resultsWordstrans = pd.DataFrame(resultsWordstrans)
resultsWordstrans.index = simio.index
resultsWordstrans.columns = simio.columns
return resultsWordstrans

datasetR = properscaler(textvectors)

I split the sets in training and testing, and visualize the distribution of the response

datasetR['target'] = maindataset['offensive_language'].values

outp = train_test_split(datasetR, train_size=0.7)
finaleval=outp[1]
subset=outp[0]

x_subset = subset.drop(columns=["target"]).to_numpy()
y_subset = subset['target'].to_numpy()
x_finaleval = finaleval.drop(columns=["target"]).to_numpy()
y_finaleval = finaleval[['target']].to_numpy()

sns.displot(y_subset)

The distribution of the response is important to select the proper activation function in NN and to determine if it is necessary to apply any steps to rebalance the classes. In this case a sigmoid is selected as the final function since it is the selected outcome of a binary classification (the function tends to 0 or 1). No rebalance is needed

This is the definition of the neural networks using Keras

#initialize
neur = tf.keras.models.Sequential()
#layers
neur.add(tf.keras.layers.Dense(units=100, activation='linear'))
neur.add(tf.keras.layers.Dense(units=200, activation='relu'))
neur.add(tf.keras.layers.Dense(units=500, activation='tanh'))

#last layer
neur.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))

#for binary classification: cross entropy as loss function, sigmoid for optimizer, recall and precision as metrics
neur.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[tf.keras.metrics.Precision(),tf.keras.metrics.Recall()])

Train the model

neur.fit(x_subset, y_subset, batch_size=20000, epochs=700)

We see on the last steps that the precision and recall are not improving anymore, so we are sure the model has done everything it can do at this point. Now I evaluate the test set.

test_out = neur.predict(x_finaleval)
output = outp[1][[0]]
scal = MinMaxScaler()
output['predicted'] = scal.fit_transform(test_out)
output['actual'] = y_finaleval
output = output.drop(columns=[0])
output = pd.merge(output, maindataset[['index','tweet']], left_index=True, right_on=['index'])
output = output.sort_values(['predicted'], ascending=False)
pd.options.display.max_colwidth = 150
output

Confusion Matrix (cut point at 0.5)

output["predictedVal"] = np.where(output['predicted']>=0.5,1,0)
print(classification_report(output['actual'],output["predictedVal"] ))
ConfusionMatrixDisplay.from_predictions(y_true=output['actual'] ,y_pred=output['predictedVal'] , cmap='PuBu')

Using the same approach now for the hate speech dataset

datasetR['target'] = maindataset['hate_speech'].values

outp = train_test_split(datasetR, train_size=0.7)
finaleval=outp[1]
subset=outp[0]

x_subset = subset.drop(columns=["target"]).to_numpy()
y_subset = subset['target'].to_numpy()
x_finaleval = finaleval.drop(columns=["target"]).to_numpy()
y_finaleval = finaleval[['target']].to_numpy()
#size of the training set
print(len(y_subset))
sns.displot(y_subset)

In this example the classes are unbalanced. I used this small function to rebalance the classes using resample.

def rebalance(sset, min, max):
classes = list(set(sset["target"]))
a = []
for clas in classes:
positives = sset[sset['target']==clas]
if len(positives) < min:
positives = resample(positives, n_samples=min, replace=True)
if len(positives) > max:
positives = resample(positives, n_samples=max, replace=False)
a.append(positives)
rebalanced = pd.concat(a, axis=0, ignore_index=True)
return rebalanced

subsetR = rebalance(sset=subset, min=round(5000), max=round(7000))

x_subset = subsetR.drop(columns=["target"]).to_numpy()
y_subset = subsetR['target'].to_numpy()
print(len(y_subset))
sns.displot(y_subset)

The new updated dataset looks better now

Now, let’s train the neural network

#initialize
neur = tf.keras.models.Sequential()
#layers
neur.add(tf.keras.layers.Dense(units=100, activation='linear'))
neur.add(tf.keras.layers.Dense(units=200, activation='relu'))
neur.add(tf.keras.layers.Dense(units=500, activation='tanh'))

#output layer
neur.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))

#using mse for regression. Simple and clear
neur.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[tf.keras.metrics.Precision(),tf.keras.metrics.Recall()])

neur.fit(x_subset, y_subset, batch_size=10000, epochs=700)

Doing the inference on the test set, these are the results for the offensive dataset

test_out = neur.predict(x_finaleval)
output2 = outp[1][[0]]
scal = MinMaxScaler()
output2['predicted'] = scal.fit_transform(test_out)
output2['actual'] = y_finaleval
output2 = output2.drop(columns=[0])
output2 = pd.merge(output2, maindataset[['index','tweet']], left_index=True, right_on=['index'])
output2 = output2.sort_values(['predicted'], ascending=False)
pd.options.display.max_colwidth = 150
output2

Let’s now review the confusion matrix

output2["predictedVal"] = np.where(output2['predicted']>=0.5,1,0)
print(classification_report(output2['actual'],output2["predictedVal"] ))
ConfusionMatrixDisplay.from_predictions(y_true=output2['actual'] ,y_pred=output2['predictedVal'] , cmap='PuBu')

The results are far from perfect but some steps can be done at this point to improve the results:

  1. Use different parameters to rebalance the classes.
  2. Use a different cut point to determine when a tweet is offensive (play with the balance between false positives and false negatives)
  3. Try a more elaborated neural network, until the point of overfitting and then reduce the overfitting with regularization and/or dropout

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->