Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

References
Latest   Machine Learning

References

Last Updated on July 25, 2023 by Editorial Team

Author(s): Joseph Reddy

Originally published on Towards AI.

Machine Learning, Python

End to End Model of Data Analysis & Prediction Using Python on SAP HANA Table Data

This blog helps to connect with SAP HANA DB (Version 1.0 SPS12) then extracts the data from HANA table/View and analyzes the data using the Python Pandas library. Then you can clean and select independent variables/features data to feed the Machine learning algorithms to predict dependent variables or find insights.

In today’s digital economy, businesses cannot take action on stale insights, thus a true in-memory data platform should support real-time processing for transactions and analytics for all of a company’s data. SAP HANA helps to manage data in a single in-memory platform, so you can take action at the moment. Accelerate the pace of innovation and run live in this new digital economy. SAP HANA Capabilities include database services, advanced analytics processing, app development, data access, administration, and openness.

Python is becoming popular in analytics and data science. It is also portable, free, and easy. Python lets you work quickly and integrate systems more effectively. Python has a large library base that you can use so you don’t have to write your own code for every single thing. There are libraries for regular expressions, documentation-generation, unit-testing, web browsers, threading, databases, CGI, email, image manipulation, and a lot of other functionality.

Scenario: I am taking the state wise startup company’s expenditure (R&D Spend, Administration Spend, and Marketing Spend) and profit data.

The goal is to predict the Profit for the given set of expenditure values. I am not explaining details about the ML Algorithm and the parameter tuning here. I would like to show the end to end process of Data extraction from SAP HANA DB, analyzing, cleaning, feature selection, and applying machine learning model and finally write back the results and ML algorithm performance metrics to the HANA tables.

The linear regression is the most commonly used model in research and business and is the simplest to understand, so using the random forest regression method we will predict the Profit.

The below diagram shows the ML Prediction life cycle and steps followed in the use case.

The basic steps involved in this process are:

1. Check the HANA Table data and analyze it using SQL in HANA Studio/WEB IDE.

(Make sure you have required privileges to do DML operations on the tables in SAP HANA Database.)

2. Import Pyodbc, Pandas, Sklearn, Matplotlib, seaborn libraries in python.

3. Create a connection to the HANA database and execute the required SQL.

4. Extract all the historical data into the data frame object and start analyzing it in Python using pandas.

5. Do the feature engineering, data cleaning and then feed the final set of independent variables to Machine learning algorithm (Random Forest) to predict the dependent variable (Profit).

6. Analyze the Machine learning algorithm metrics and fine-tune for better accuracy by repeating step 5. Store the Machine learning algorithm metrics in log table and also update the predicted value of historical data into the HANA Table.

7. For the new data set, create the python program which reads the new data using the Pyodbc connection and predicts the dependent variable (Profit) and updates the actual transactional table for reporting.

8. Schedule this program and keep monitoring the model metrics and predicted value.

1. Check the HANA Table data and analyze it using SQL

I have created two tables, one contains the actual company wise data which is used to store the transactional data. The second one to store the metrics of the Machine learning algorithm (Ex: MAE, R Squared, MAPE, RMSE, Accuracy, etc.)

Please find the structures of both tables below.

Main transactional data table structure.

ML Metrics table to store the evaluation parameters.

The historical data (which is lesser than the current month) before prediction with state wise expenditure and profit shown below. I added the predicted profit column as well, to store the predicted value by ML Algorithm using python and it is updated as NULL now.

SELECT * FROM “SCHEMA”.”STARTUP_DATA2"

Let us analyze the data using SQL in HANA Studio with available functions, we can find mean, standard deviation, median, max, min and count of nulls using below SQL. (You can try for all the measures)

Select State, sum(Profit), avg(Profit), count(Profit), max(Profit), count( distinct profit) as “unique”, stddev(Profit), min(Profit), median(Profit),

sum(case when Profit IS NULL THEN 1 ELSE 0 END) AS “NO OF NULLS”from “SCHEMA”.”STARTUP_DATA2" group by State order by State;

2. Import Pyodbc, pandas, Sklearn libraries in python

Now I am coming to Python scripting interface (Jupyter or spyder).

Import the required libraries.

PYODBC is an open source Python module that makes accessing ODBC databases simple. It implements the DB API 2.0 specification but is packed with even more Pythonic convenience. Using Pyodbc, you can easily connect Python applications to data sources with an ODBC driver.

Typically, Pyodbc is installed like any other Python package by running:

pip install Pyodbc

from a Windows DOS prompt or Unix shell.

To install this package with Conda run:

conda install -c anaconda pyodbc

For more information on Pyodbc, see the Github Pyodbc Wiki.

Seaborn: Seaborn is a graphics library built on top of Matplotlib. It allows to make your charts prettier and facilitates some of the common data visualization needs

Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

Numpy: NumPy is the fundamental package for scientific computing with Python. Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data

Sklearn: Scikit-learn provides a range of supervised and unsupervised learning algorithms via a consistent interface in Python. It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy

3. Create a connection to the HANA database and execute the required SQL.

Establish the connection and once a connection has been established, your application can execute selects, inserts, or other ODBC operations supported by your driver and database.

conn = pyodbc.connect(‘DRIVER={HDBODBC};SERVERNODE=10.xx.xxx.xx:30115;SERVERDB=ED1;UID=USERID;PWD=PASSWORD’)#Open connection to SAP HANA and check for count of records.# check if table has entriescursor = conn.cursor()sql_query1 = ‘SELECT count(*) FROM SCHEMA.STARTUP_DATA2’dcount = pd.read_sql(sql_query1, conn)dcountprint (‘Table exists and contains’, dcount.head(1), ‘records’ )

4. Extract the data into a data frame object and start analyzing it in Python using pandas

Execute the Select SQL and read the data and save it to the data frame. Once you get the data into the data frame, you can apply all statistical functions to analyze the data as shown below.

#querying the sap hana db data and store in dataframesql_query2 = ‘SELECT * FROM SCHEMA.STARTUP_DATA2’df = pd.read_sql(sql_query2, conn)df.head()#USING GROUP BY CLAUSE TO ANALYZE THE DATAdf1.groupby(‘STATE’).agg({‘PROFIT’:[‘sum’,’mean’,’count’,’max’,’std’,’min’,’median’]}).round(0)

5. Do the feature engineering, data cleaning, feed the final set of independent variables to Machine learning algorithm (Random Forest) to predict a dependent variable

Check for the missing values or nulls using the functions and replace the values with mean/mode accordingly.

For example, I have two empty values in the Rnd Spend column, so replacing with Mean/Median value. If the column is having more null values, then you can drop the column form the analysis.

Encode the nominal values, for example, State has 3 unique values (‘New York’,’California’,’Florida’) replacing them with 0,1,2 codes using the map function

Map ({‘New York’:0,’California’:1,’Florida’:2})

Now find the correlation between the dependent variable and independent variables to finalize the final independent variables/features for prediction. After observing the data choosing (R&D Spend, Administration Spend, and Marketing Spend) as independent variables and profit as a dependent variable.

Now I am using random forest regression to predict the profit.

Random forests or random decision forests are an ensemble learning method for classification and regression (and other tasks) which operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random forests are bagged decision tree models that train on a subset of features on each split (in each iteration).

6.Store the Machine learning algorithm metrics in log table and also update the predicted value into the HANA Table

Using the insert and update statements you can send the data back to the database tables (Ex: ML Metrics and Predicted values). Take care of the primary key while doing insertions.

Check the data in the SAP HANA table to see the updated values in the predicted profit column.

7. For the new data set, create the python program which reads the new data using Pyodbc connection and predicts the dependent variable (Profit) and updates the actual transactional table for reporting

In business, new transactional data will be flowing into the Tables/data warehouse. (In my case SAP HANA SQL data warehouse). For the new data set, suppose you want to know what could be the profit if I spend “X” expenditure for next month.

Analyze whether this cost increase/decrease gives you a return on investment/profit. Then,

Create the Python script in which you perform the following tasks

· fetch the new dataset and process it through the predictor/model

· Update predicted value back to the DB.

· Schedule this python script using Windows Scheduler/ python scheduler

8. Schedule this program and keep monitoring the model metrics and predicted value using HANA Models/reports

You can schedule the Python script using Windows Scheduler/ using the scheduler as shown below.

# sample piece of code$ pip install scheduleimport scheduleimport timedef predict_job(x,y,z):Y_pred = rf.predict([[x,y,z]])print(“Predicted Value is”, Y_pred)#@daily scheduleschedule.every().day.at(“10:30”).do(predict_job)schedule.every().monday.do(predict_job)while True:schedule.run_pending()time.sleep(1)

Now in SAP HANA Client tools WEB IDE/ HANA Studio, Create the HANA model to join the main transactional data with dimension tables like (Time, Location) for reporting purposes.

State wise Actual Vs Predicted Profit Comparison Chart.

When using Python IDE’s such as Jupyter, the data is persisted to the client with the above approach and this means more processing time when you have large data set, which leads to drop the productivity of Data Scientists.

This is where the SAP HANA Data Frame can add real value to a Data Scientist’s work. More features and capabilities are included in SAP HANA 2.0 SPS03 Version to analyze/address the data science use cases with Python driver (hdbcli) and then the Python Client API for machine learning algorithms.

Please find the python code in GitHub for reference

https://github.com/JOSEPHREDDY07/Linear-regression-with-SAP-HANA-DB-Integration

https://blogs.sap.com/2019/04/05/new-r-and-enhanced-python-api-for-sap-hana-machine-learning-released/

https://blogs.sap.com/2018/04/06/whats-new-in-sap-hana-2.0-sps-03-by-the-sap-hana-academy/

https://datatofish.com/python-script-windows-scheduler/

https://github.com/dbader/schedule

https://blogs.sap.com/2018/10/29/python-client-api-for-machine-learning-in-sap-hana-2.0-express-edition-sps-03-revision-33/

https://blogs.sap.com/2018/04/20/enhancements-to-external-machine-learning-in-sap-hana-2.0-sps-03/

https://help.sap.com/viewer/42668af650f84f9384a3337bcd373692/2.0.02/en-US/b2a37c7ecec2416bbf1889b2f2883ade.html

https://towardsdatascience.com/why-random-forest-is-my-favorite-machine-learning-model-b97651fa3706

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->