PEARL: Probabilistic Embeddings for Actor-Critic RL
Last Updated on July 20, 2023 by Editorial Team
Author(s): Sherwin Chen
Originally published on Towards AI.
A sample-efficient meta reinforcement learning method
Top highlight
Source: Unsplash
Meta reinforcement learning could be particularly challenging because the agent has to not only adapt to the new incoming data but also find an efficient way to explore the new environment. Current meta-RL algorithms rely heavily on on-policy experience, which limits their sample efficiency. Worse still, most of them lack mechanisms to reason about task uncertainty when adapting to a new task, limiting their effectiveness in sparse reward problems.
We discuss a meta-RL algorithm that attempts to address these challenges. In a nutshell, the algorithm, namely Probabilistic Embeddings for Actor-Critic RL(PEARL) proposed by Rakelly & Zhou et al. in… Read the full blog for free on Medium.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.
Published via Towards AI