Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

N-Dimensional DICOM Volumes With ImageIO
Latest   Machine Learning

N-Dimensional DICOM Volumes With ImageIO

Last Updated on July 17, 2023 by Editorial Team

Author(s): Abby Morgan

Originally published on Towards AI.

Visualizing, augmenting, and interacting with high-dimensional DICOM volumes in Python

Still from the axial plane of a cranial CT; Image by author

In this article, we’ll demystify how to access a common format of medical image data, a DICOM file using imageio. We’ll discuss:

  • What is a DICOM file?
  • Reading a single DICOM file and its metadata
  • Reading DICOM volumes
  • Visualizing, augmenting, and interacting with DICOM volumes

Let’s dive in!

What is a DICOM file?

DICOM (Digital Imaging and Communications in Medicine) files are the standard format for human medical imaging. DICOM files also contain essential metadata with attributes like patient name, ID, and image pixel data. This format ensures that the medical image data can never be separated from a patient’s metadata by mistake and also that we always have the information we need to properly display the images it contains.

DICOM file structure; Image from sachpiazidis.com

DICOM files with multiple image dataset elements are referred to as “volumes” and are common in a wide range of fields, including radiology, orthopedics, neurology, oncology, veterinary medicine, and more. DICOM files also support various modalities like CT scans, MRIs, and ultrasounds.

Follow along with the full code tutorial in my Google Colab here.

Reading a single DICOM file

Imageio’s imread function takes in a DICOM file and loads it as an image object, which is a type of NumPy array. Once we’ve converted the DICOM file to an imageio image object, we can plot it with matplotlib.pyplot, just as we would any other image array.

# Download data and change working directory
!kaggle datasets download -d salikhussaini49/tcia-chest-ct; unzip tcia-chest-ct.zip; rm tcia-chest-ct.zip
%cd TCIA\ Chest\ CT\ \(Sample\)

import imageio as iio
# Read single DICOM image with imread
im = iio.imread('chest-220.dcm')
# Plot three versions of chest dcm with image transformations
plt.rcParams['figure.figsize'] = (14, 8)
fig, axes = plt.subplots(nrows= 1, ncols= 3)
axes[0].imshow(im, cmap= 'gray')
axes[1].imshow(im, vmin= -200, vmax= 200, cmap= 'gray')
axes[2].imshow(im, vmin= -200, vmax= 200, cmap= 'magma')
axes[0].set_title('Original')
axes[1].set_title('High Contrast')
axes[2].set_title('Colored')
for ax in axes:
ax.axis('off')
plt.show()
Plotting DICOM images with matplotlib’s subplots and some basic image augmentation techniques; Image by author

Reading DICOM metadata

One of the most important characteristics of the DICOM file is its structure, which binds the image to its corresponding metadata.

Imageio loads available DICOM metadata into a dictionary that is accessible through the meta attribute. You can also access specific metadata by indexing the meta dictionary with any of the available keys:

# print all metadata keys
print(im.meta.keys())

# print some specific metadata values using their keys
print(im.meta.PatientSex)
print(im.meta.StudyDate

We’ll be taking a look into a few important pieces of metadata in the next section.

Reading a DICOM volume

There are various ways to read a DICOM volume, but in this tutorial, we’ll use ImageIO’s volread() function. This function can load multidimensional datasets directly from a folder of images and aggregate the metadata accordingly.

To plot high-dimensional data, all we have to do is slice it along the desired plane. Plotting slices sequentially can create a “fly-through” effect that helps you visualize the volume as a whole. Below we plot our chest CT scans sequentially:

# plot all five chest DICOM images in one view
fig, axes = plt.subplots(nrows=1, ncols=5)
[axes[x].imshow(vol[x], vmin= -300, vmax = 300) for x in range(5)]
[ax.axis('off') for ax in axes]
plt.show()
Sequential chest CT series; Image by author

Knee CT

We can even make an interactive visualization that steps through the CT scan sequentially using ipywidgets. For this example, we’ll use a volume of knee CT scans that is somewhat larger than the toy dataset we’ve been using so far.

# Download the data from Kaggle
!kaggle datasets download -d abbymorgan/pcir-knee-mri; unzip pcir-knee-mri.zip; rm pcir-knee-mri.zip;

# read in knee volume
knee_vol = iio.volread('PCIR Knee MRI')
# plot interactive knee CT walkthrough
@widgets.interact(knee=(0,26))
def knee_DICOM(knee = 0):
fig, ax = plt.subplots(1,1, figsize = (8,8))
ax.imshow(knee_vol[knee,:,:], cmap='bone')
ax.axis('off')
Walking through a knee CT scan (sagittal plane); GIF by author

After using the interactive tool to walk through the full scan, we can isolate a few slices of interest for further evaluation. Let’s say we think we see something interesting around slices 15–20. We can display only those slices with the code below:

# plot slices 15-20
fig, axes = plt.subplots(nrows=1, ncols=5, figsize=(20,15))
for i in list(zip(range(0,5), range(15, 20))):
[axes[i[0]].imshow(knee_vol[i[1]], cmap= 'bone')]
[ax.axis('off') for ax in axes]
Image by author

Slicing different planes

DICOM image data can be 3D or even 4D, but how can we slice the image arrays to view different planes of this information? To answer this question, we’ll first review a few helpful terms.

Images from DeepAI; Notice how the stacked images can be sliced along another plane

N-dimensional planes

There are many ways to slice a 3D volume into 2D images, but when looking at human anatomy, the three main views are referred to as the axial, coronal, and sagittal planes. However, because most datasets don’t have equal sampling rates across each dimensions, they also often don’t have equal aspect ratios along each dimension. In these cases, we’ll need to stretch the pixels to account for the differences.

Axial, coronal, and sagittal planes; image from IPF Radiology Rounds

But how much should we stretch the pixels and in which directions? In order to calculate this, we’ll have to dive back in to some of our DICOM metadata.

Attribute calculations

Field of view is the amount of physical space covered by an image. We can calculate the FOV using two other properties, whose values are stored in our DICOM metadata. For this example we’ll use a cranial CT scan. Follow along with the full code here, or download the data here.

  1. Array shape: the number of data elements on each axis (metadata key: shape), along each axis.
  2. Sampling resolution: the amount of physical space covered by each pixel (metadata key: sampling) along each axis.
# Download data from kaggle
!kaggle datasets download -d abbymorgan/cranial-ct; unzip cranial-ct.zip; rm cranial-ct.zip;

# Read cranial DICOM volume
cranial_vol = iio.volread('Cranial CT')
# Review available metadata
cranial_vol.meta
Cranial Series 3 metadata; Image by author

We can calculate the FOV along each axis by multiplying the shape and sampling attributes for each axis.

Note that the FOV often varies across dimensions (as shown above). This means that the amount of space covered by our image is often not equal across planes, or, in other words, our FOV is often not a perfect cube.

In order to slice different planes of our images, we also need to understand the aspect ratio. The pixel aspect ratio determines how much we need to stretch the pixels in each direction in order to get an appropriately scaled FOV. We can calculate the pixel aspect ratio using the same sampling attribute we used above, which is conveniently stored in the DICOM metadata.

# define sampling resolution along each axis
d0, d1, d2 = cranial_vol.meta.sampling
# define shape along each axis
n0, n1, n2 = cranial_vol.meta.shape

# calculate field of view along each axis
axial_fov = n0 * d0
coronal_fov = n1 * d1
sagittal_fov = n2 * d2
# calculate axial aspect ratio
axial_aspect = d1 / d2
# calculate sagittal aspect ratio
sagittal_aspect = d0 / d1
# calculate coronal aspect ratio
coronal_aspect = d0 / d2
@widgets.interact(brain=(0,225))
def brain_DICOM(brain = 0):
fig, ax = plt.subplots(1,1, figsize = (8,8))
ax.imshow(cranial_vol[brain,:,:], vmin= -100, vmax=100)
ax.axis('off')
# ipywidget wrapper
@widgets.interact(coronal_slice=(0,n1-1),
sagittal_slice=(0,n2-1)
)

# walkthrough function
def slicer(coronal_slice=100, sagittal_slice=100):
fig, ax = plt.subplots(1, 2, figsize=(20, 15))
# visualize coronal plane
ax[0].imshow(cranial_vol[:,coronal_slice,:], vmin=-100, vmax=100,aspect= coronal_aspect)
ax[0].axis('off')
ax[0].set_title('Coronal')
ax[0].invert_yaxis()
# visualize sagital plane
ax[1].imshow(cranial_vol[:,:,sagittal_slice], vmin=-100, vmax=100,aspect= sagittal_aspect)
ax[1].axis('off')
ax[1].set_title('Sagittal')
ax[1].invert_yaxis()
Walking through a cranial CT; GIF by author
Coronal and sagittal planes of cranial CT scan; GIF by author

Notice that the field of view is different in the coronal and sagittal planes than it is in the axial plane, but the scale and proportions of the skull remain consistent. If we hadn’t adjusted the aspect ratio, our coronal and sagittal views would appear stretched. Below we plot a sagittal image with the original unadjusted axial aspect ratio (left), and another image with the corrected sagittal aspect ratio (right).

Sagittal plane with original axial aspect ratio (left) and corrected sagittal aspect ratio (right); Image by author

Wrap up

Thanks for making it all the way to the end of this article, and I hope you found it useful! Feel free to leave me a comment if you have any questions, and stay tuned for more content!

Follow along with the full code tutorial in my Google Colab here.

Feel free to check out some of my other content below!

Explainable AI: Visualizing Attention in Transformers

And logging the results in an experiment tracking tool

generativeai.pub

SAM + Stable Diffusion for Text-to-Image Inpainting

Create a pipeline with GroundingDINO, Segment Anything, and Stable Diffusion and track the results in Comet

ai.plainenglish.io

Debugging Image Classifiers With Confusion Matrices

How to intuitively explore model predictions on specific images over time

medium.datadriveninvestor.com

Compare and Evaluate Object Detection Models From TorchVision

Visualizing the performance of Fast RCNN, Faster RCNN, Mask RCNN, RetinaNet, and FCOS

pub.towardsai.net

Credit Card Fraud Detection With Autoencoders

And how to intuitively debug your results with Comet

betterprogramming.pub

Powering Anomaly Detection for Industry 4.0

Build, track, and organize production-grade anomaly detection models

medium.datadriveninvestor.com

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->