Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Machine Learning Project in Python Step-By-StepCredit Card Fraud Detection
Latest

Machine Learning Project in Python Step-By-StepCredit Card Fraud Detection

Last Updated on March 14, 2023 by Editorial Team

Author(s): Fares Sayah

Originally published on Towards AI.

Step-By-Step Machine Learning Project in Python — Credit Card Fraud Detection

Demonstration of How to Handle Highly Imbalanced Classification Problems

Photo by CardMapr on UnsplashWhat is Credit Card Fraud?Credit card fraud occurs when an individual uses someone else’s credit card or account information without permission to make unauthorized purchases or withdraw funds through cash advances. It can happen both online and in physical stores. As a business owner, you can protect yourself from potential headaches and negative publicity by being vigilant and identifying instances of fraudulent credit card usage in your payment system.

Three challenges surrounding Credit Card Fraud

  1. It’s not always easy to agree on the ground truth of what “fraud” means.
  2. Regardless of how you define ground truth, the vast majority of charges are not fraudulent.
  3. Most merchants aren’t experts at evaluating the business impact of fraud.

Problem Statement:

The objective of Credit Card Fraud Detection is to accurately identify fraudulent transactions from a large pool of credit card transactions by building a predictive model based on past transaction data. The aim is to detect all fraudulent transactions with minimum false alarms.

Observations

  • The dataset is highly imbalanced, with only 0.172% of observations being fraudulent.
  • The dataset consists of 28 transformed features (V1 to V28) and two untransformed features (Time and Amount).
  • There is no missing data in the dataset, and no information about the original features is provided.

Why does class imbalance affect model performance?

  • In general, we want to maximize the recall while capping FPR (False Positive Rate), but you can classify a lot of charges wrong and still maintain a low FPR because you have a large number of true negatives.
  • This is conducive to picking a relatively low threshold, which results in a high recall but extremely low precision.

What is the catch?

  • Training a model on a balanced dataset optimizes performance on validation data.
  • However, the goal is to optimize performance on the imbalanced production dataset. You ultimately need to find a balance that works best in production.
  • One solution to this problem is: Use all fraudulent transactions but subsample non-fraudulent transactions as needed to hit our target rate.

Business questions to brainstorm:

Since all features are anonymous, we will focus our analysis on non-anonymized features: Time, Amount

  1. How different is the amount of money used in different transaction classes?
  2. Do fraudulent transactions occur more often during certain frames?

png

Exploratory Data Analysis — EDA

png

Let us now check the missing values in the dataset.

0

The only non-transformed variables to work with are:

  • Time
  • Amount
  • Class (1: fraud, 0: not_fraud)

png

0    284315
1 492
Name: Class, dtype: int64

Notice how imbalanced is our original dataset! Most of the transactions are non-fraud. If we use this DataFrame as the base for our predictive models and analysis, we might get a lot of errors, and our algorithms will probably overfit since they will “assume” that most transactions are not a fraud. But we don’t want our model to assume, we want our model to detect patterns that give signs of fraud!

Determine the number of fraud and valid transactions in the entire dataset.

Shape of Fraudulant transactions: (492, 31)
Shape of Non-Fraudulant transactions: (284315, 31)

How different is the amount of money used in different transaction classes?

png

Do fraudulent transactions occur more often during a certain time frame?

png

Distributions:

By seeing the distributions, we can have an idea of how skewed these features are, and we can also see further distributions of the other features. There are techniques that can help the distributions be less skewed, which will be implemented in this notebook in the future.

Doesn’t seem like the time of the transaction really matters here, as per the above observation. Now let us take a sample of the dataset for our modeling and prediction.

pngpng

Correlation Matrices

Correlation matrices are the essence of understanding our data. We want to know if there are features that influence heavily whether a specific transaction is a fraud. However, it is important that we use the correct DataFrame (subsample) in order for us to see which features have a high positive or negative correlation with regard to fraudulent transactions.

Summary and Explanation:

  • Negative Correlations: V17, V14, V12, and V10 are negatively correlated. Notice how the lower these values are, the more likely the end result will be a fraudulent transaction.
  • Positive Correlations: V2, V4, V11, and V19 are positively correlated. Notice how the higher these values are, the more likely the end result will be a fraudulent transaction.
  • BoxPlots: We will use boxplots to have a better understanding of the distribution of these features in fraudulent and non-fraudulent transactions.

Note: We have to make sure we use the subsample in our correlation matrix or else our correlation matrix will be affected by the high imbalance between our classes. This occurs due to the high-class imbalance in the original DataFrame.

png

The highest correlations come from:

- Time & V3 (-0.42)
- Amount & V2 (-0.53)
- Amount & V4 (0.4)

Data Pre-processing

Time and Amount should be scaled as the other columns.

Fraudulant transaction weight: 0.0017994745785028623
Non-Fraudulant transaction weight: 0.9982005254214972

TRAINING: X_train: (159491, 30), y_train: (159491,)
_______________________________________________________
VALIDATION: X_validate: (39873, 30), y_validate: (39873,)
__________________________________________________
TESTING: X_test: (85443, 30), y_test: (85443,)

Model Building

Artificial Neural Networks (ANNs)

2671/2671 [==============================] - 11s 4ms/step - loss: 0.0037 - fn: 29.0000 - fp: 12.0000 - tn: 85295.0000 - tp: 107.0000 - precision: 0.8992 - recall: 0.7868
[0.003686850192025304, 29.0, 12.0, 85295.0, 107.0, 0.8991596698760986, 0.7867646813392639]

png

Train Result:
================================================
Accuracy Score: 99.99%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 0.95 1.00 0.98 1.00
f1-score 1.00 0.97 1.00 0.99 1.00
support 159204.00 287.00 1.00 159491.00 159491.00
_______________________________________________
Confusion Matrix:
[[159204 0]
[ 14 273]]

Test Result:
================================================
Accuracy Score: 99.96%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 0.92 1.00 0.96 1.00
recall 1.00 0.81 1.00 0.90 1.00
f1-score 1.00 0.86 1.00 0.93 1.00
support 85307.00 136.00 1.00 85443.00 85443.00
_______________________________________________
Confusion Matrix:
[[85298 9]
[ 26 110]]

XGBoost

Train Result:
================================================
Accuracy Score: 100.00%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 1.00 1.00 1.00 1.00
f1-score 1.00 1.00 1.00 1.00 1.00
support 159204.00 287.00 1.00 159491.00 159491.00
_______________________________________________
Confusion Matrix:
[[159204 0]
[ 0 287]]

Test Result:
================================================
Accuracy Score: 99.96%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 0.95 1.00 0.97 1.00
recall 1.00 0.82 1.00 0.91 1.00
f1-score 1.00 0.88 1.00 0.94 1.00
support 85307.00 136.00 1.00 85443.00 85443.00
_______________________________________________
Confusion Matrix:
[[85301 6]
[ 25 111]]

Random Forest

Train Result:
================================================
Accuracy Score: 100.00%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 1.00 1.00 1.00 1.00
f1-score 1.00 1.00 1.00 1.00 1.00
support 159204.00 287.00 1.00 159491.00 159491.00
_______________________________________________
Confusion Matrix:
[[159204 0]
[ 0 287]]

Test Result:
================================================
Accuracy Score: 99.96%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 0.91 1.00 0.95 1.00
recall 1.00 0.82 1.00 0.91 1.00
f1-score 1.00 0.86 1.00 0.93 1.00
support 85307.00 136.00 1.00 85443.00 85443.00
_______________________________________________
Confusion Matrix:
[[85296 11]
[ 25 111]]

CatBoost

Train Result:
================================================
Accuracy Score: 100.00%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 1.00 1.00 1.00 1.00
recall 1.00 1.00 1.00 1.00 1.00
f1-score 1.00 1.00 1.00 1.00 1.00
support 159204.00 287.00 1.00 159491.00 159491.00
_______________________________________________
Confusion Matrix:
[[159204 0]
[ 1 286]]

Test Result:
================================================
Accuracy Score: 99.96%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 0.93 1.00 0.97 1.00
recall 1.00 0.82 1.00 0.91 1.00
f1-score 1.00 0.87 1.00 0.94 1.00
support 85307.00 136.00 1.00 85443.00 85443.00
_______________________________________________
Confusion Matrix:
[[85299 8]
[ 25 111]]

LigthGBM

Train Result:
================================================
Accuracy Score: 99.58%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 0.23 1.00 0.62 1.00
recall 1.00 0.59 1.00 0.79 1.00
f1-score 1.00 0.33 1.00 0.67 1.00
support 159204.00 287.00 1.00 159491.00 159491.00
_______________________________________________
Confusion Matrix:
[[158652 552]
[ 119 168]]

Test Result:
================================================
Accuracy Score: 99.50%
_______________________________________________
Classification Report:
0 1 accuracy macro avg weighted avg
precision 1.00 0.16 0.99 0.58 1.00
recall 1.00 0.53 0.99 0.76 0.99
f1-score 1.00 0.25 0.99 0.62 1.00
support 85307.00 136.00 0.99 85443.00 85443.00
_______________________________________________
Confusion Matrix:
[[84942 365]
[ 64 72]]

Model Comparison

png

Conclusions:

We learned how to develop our credit card fraud detection model using machine learning. We used a variety of ML algorithms, including ANNs and Tree-based models. At the end of the training, out of 85443 validation transaction, XGBoost performs better than other models:

  • Correctly identifying 111 of them as fraudulent
  • Missing 9 fraudulent transactions
  • At the cost of incorrectly flagging 25 legitimate transactions

Links and Resources:


Machine Learning Project in Python Step-By-Step — Credit Card Fraud Detection was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->