Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Logistic Regression’s Journey with Imbalanced Data
Latest   Machine Learning

Logistic Regression’s Journey with Imbalanced Data

Last Updated on January 10, 2024 by Editorial Team

Author(s): Anand Raj

Originally published on Towards AI.

Visual intuition behind the effect of imbalanced data on logistic regression

In the vast landscape of data-driven decision-making, class imbalance is a subtle yet influential factor that can significantly impact the performance of machine learning models. Class imbalance occurs when the distribution of instances across different classes in a dataset is uneven, with one class vastly outnumbering the others. This scenario is prevalent in various real-world applications, from medical diagnoses to fraud detection and sentiment analysis.

In the presence of class imbalance, models may exhibit a bias towards the majority class, leading to suboptimal performance on the minority class. The consequences of misclassification can be severe, primarily when the minority class represents critical or rare events. Understanding how to navigate the complexities introduced by imbalanced classes is crucial for building robust and reliable machine-learning models.

Image Source: Spotebi.com

How does class imbalance occur?

There are many different sources of imbalanced datasets, and each one poses different difficulties for machine learning applications. The inherent class distribution captures instances in which imbalances arise from the classes’ inherent predominance in real-world circumstances. Positive cases may be far more rare than negative ones, for example, in fraud detection or rare disease diagnosis. When data collection procedures are intrinsically biased, such as when samples are drawn from particular demographics or geographic areas, imbalances are introduced via sampling bias. Mislabeled cases or missing data are examples of data collection problems that can lead to skewed class distributions. Some classes may be underrepresented in the dataset because of the expense and work involved in gathering data for them.

Common domains where imbalance occurs:

  • Fraud Detection.
  • Claim Prediction
  • Default Prediction.
  • Churn Prediction.
  • Spam Detection.
  • Anomaly Detection.
  • Outlier Detection.
  • Intrusion Detection
  • Conversion Prediction.

We will explore an instance where the imbalance in data increases, observing its impact on the decision surface.

I have used the iris dataset from Kaggle and tweaked it a little as per our needs.

Let’s Consider these five scenarios:

Scenario 1: Balanced Dataset (n​Versicolor : nVirginica 1:1​)
Scenario 2: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:2)
Scenario 3: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:3)
Scenario 4: Imbalanced Dataset (n​Versicolor : nVirginica​ ≈ 1:4)
Scenario 5: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:11)

Scenario 1: Harmony in Equilibrium”
(Balanced Dataset with n​Versicolor : nVirginica ≈ 1:1​)
An equal number of observations in Class Iris-Versicolor ≈ Class Iris-Virginica, creating a balanced symphony.

Scenario 1: Balanced Dataset (n​Versicolor : nVirginica 1:1​)

As we can see in the above image the decision surface linearly separates both classes quite well and this is because the proportions of data points in both the classes are equal.

Scenario 2: The Delicate Imbalance
(Imbalanced Dataset with n​Versicolor : nVirginica ≈ 1:2​)
The count of observations in Class Iris-Versicolor is approximately half of the count in Class Iris-Virginica, revealing an uneven distribution.

Scenario 2: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:2)

With a data point proportion of 1:2, noticeable misclassifications occur among some Iris-Versicolor instances. Contrasting this with the balanced dataset (Scenario 1), the decision surface undergoes alterations, leading to less effective linear separation of the classes.

Scenario 3:The Tipping Scales
(Imbalanced Dataset with n​Versicolor : nVirginica ≈ 1:3​)
The count of observations in Class Iris-Versicolor is approximately one-third of the count in Class Iris-Virginica, showcasing a significant imbalance in the data distribution.

Scenario 3: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:3)

With a data point proportion of 1:3, a substantial number of misclassifications emerge, affecting nearly half of the Iris-Versicolor instances. Comparing this with the previous imbalanced dataset (Scenario 2), the performance of the decision surface degrades further. The dominance of Class Iris-Virginica plays a key role, influencing the decision surface adversely.

Scenario 4:The Unsettling Disparity
(Imbalanced Dataset with n​Versicolor : nVirginica ≈ 1:4​)
The count of observations in Class Iris-Versicolor is approximately one-fourth of the count in Class Iris-Virginica, illustrating a pronounced imbalance in the dataset.

Scenario 4: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:4)

With a data point proportion of 1:4, only a single data point in Class Iris-Versicolor is correctly classified, highlighting a severe imbalance. Comparing this with the preceding imbalanced dataset (Scenario 3), the performance of the decision surface further deteriorates. The overwhelming majority of data points in Class Iris-Virginica exerts significant influence, exacerbating the challenges in classification.

Scenario 5:The Extreme Odds
(Highly Imbalanced Dataset with n​Versicolor : nVirginica ≈ 1:11​)
The count of observations in Class Iris-Versicolor is approximately one-eleventh of the count in Class Iris-Virginica, indicating an exceptionally skewed distribution.

Scenario 5: Imbalanced Dataset (n​Versicolor : nVirginica ≈ 1:11)

With a data point proportion of 1:11, every data point in the minority class faces misclassification. Contrasting this with the previous imbalanced dataset (Scenario 4), the performance of the decision surface experiences a significant decline. The substantial majority of data points belonging to Class Iris-Virginica exert a profound influence, leading to increased challenges in accurate classification.

Why does this happen? [Let’s do the Math]

This happens because logistic regression tries to find the best hyperplane that maximizes the distance of every data point to the optimal hyperplane (a.k.a Decision Surface). This is also called “Optimization”. The equation is as follows:

Let’s take three cases as an example.

Case 1: Both the classes are classified correctly with the Grey line as Decision Surface in the picture below.

Let’s assume we had a decision surface (The grey line represents the decision surface) that linearly separated both the classes perfectly, and the distance between the classes was 0.6 from the decision surface. The value of yi will be 1 for all the data points, as all the points are correctly classified if the black line is our decision surface.

Case 1: Imbalanced Dataset

Number of data points in Versicolor = 2
Number of data points in Virginica = 7

W(Transpose) * x = 0.6 {∀ Data points}
yi = 1 {All data points are correctly classified}

Let’s compute the value the below equation will return for this scenario.

∀ Data points in Virginica = 2*Σ (1*0.6) = 1.2
∀ Data points in Versicolor = 7*Σ (1*0.6) = 4.2
∀ Data points in Versicolor and Virginica = 1.2 + 4.2 = 5.4

Case 2: Only one classified correctly (Virginica class) with the Grey line as Decision Surface in the picture below.

Let’s assume that the distance of both the classes is 1 (Sigmoid will limit any distance value above 1 to 1) from the decision surface. The value of yi will be 1 for all the Virginica data points (All Virginica data points are classified correctly), and yi will be -1 for all the Versicolor data points (All Virginica data points are classified incorrectly).

Case 2: Imbalanced Dataset

Number of data points in Versicolor = 2
Number of data points in Virginica = 7

Transpose(W) * x = 1 (∀ Data points)
yi = 1 ∀ Versicolor data points (classified correctly)
yi = -1 ∀ Virginica data points (classified incorrectly)

Let’s compute the value the below equation will return for this scenario.

∀ Data points in Virginica = 7*Σ (1*1) = 7
∀ Data points in Versicolor = 2*Σ (-1*0) = 0
∀ Data points in Versicolor and Virginica = 7 + 0= 7

Now, the agrmax function will take the highest value possible, which is 7 (Case 2).

The corresponding W* (Optimal Decision Surface will be the one in Case 2), but we know it is not the optimal decision surface. This happens due to the imbalance in the classes and the majority class dominating the minority class.

Case 3: Let’s take a scenario where the data is balanced.

Let’s assume we had a decision surface (The grey line represents the decision surface) that linearly separated both the classes perfectly and the distance between the classes was 0.6 from the decision surface. The value of yi will be 1 for all the data points, as all the points are correctly classified if the black line is our decision surface.

Case 3: Balanced Dataset

Number of data points in Versicolor = 7
Number of data points in Virginica = 7

W(Transpose) * x = 0.6 {∀ Data points}
yi = 1 {All data points are correctly classified}

Let’s compute the value the below equation will return for this scenario.

∀ Data points in Virginica = 7*Σ (1*0.6) = 4.2
∀ Data points in Versicolor = 7*Σ (1*0.6) = 4.2
∀ Data points in Versicolor and Virginica = 4.2 + 4.2 = 8.4

Now, the agrmax function will take the highest value possible, which is 8.4 (Case 3). Therefore, it chooses the right decision surface, as shown in case 3.

The below representation is what the Logistic Regression in scikit-learn returns.

Decision Surface given by sklearn

We saw that imbalanced data could influence the decision surface, resulting in the model’s lousy performance. Therefore, it’s essential to handle this imbalance in the data, which can be done in the following ways.

1.Resampling techniques
2. Data augmentation
3. Synthetic minority over-sampling technique (SMOTE)
4. Ensemble techniques
5. One-class classification
6. Cost-sensitive learning
7. Evaluation metrics for imbalanced data

These are just few ways there could be many more so keep exploring.

Here is the link to the code on my GitHub.

Hope you liked the article!!!!

You may reach out to me on LinkedIn.

https://www.linkedin.com/in/anand-raj-4334a91b3/

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->