Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Introduction to Audio Machine Learning
Latest   Machine Learning

Introduction to Audio Machine Learning

Last Updated on August 9, 2023 by Editorial Team

Author(s): Sujay Kapadnis

Originally published on Towards AI.

I am currently developing an Audio Speech Recognition system, so I needed to brush up my knowledge on the basics regarding it. This article is the result of that.

Introduction to Audio

Index

  1. Introduction

Sound —

  • Sound is a continuous signal and has infinite signal values
  • Digital devices require finite arrays and thus, we need to convert them into a series of discrete values
  • AKA Digital Representation
  • Sound Power — Rate at which energy is transferred(Watt)
  • Sound Intensity — Sound Power per unit area(Watt/m**2)

Audio File formats —

  1. .wav
  2. .flac(free lossless audio codec)
  3. .mp3

Files formats are differentiated by the way they compress digital representation of the audio signal

Steps of conversion —

  • The microphone captures an analog signal.
  • The soundwave is then converted into an electrical signal.
  • this electrical signal is then digitized by an analog-to-digital converter.

Sampling

  • It is the process of measuring the value of a signal at fixed time steps
  • Once sampled, the sampled waveform is in a discrete format
Image by Author
Image by Author

Sampling rate/ Sampling frequency

  • No. of samples taken per second
  • e.g. if 1000 samples are taken per second, then sampling rate(SR) = 1000
  • HIGHER SR -> BETTER AUDIO QUALITY
Image by Author

SR considerations

  • Sampling Rate = (Highest frequency that can be captured from a signal) * 2
  • For the Human ear- the audible frequency is 8KHz hence we can say that the Sampling rate(SR) is 16KHz
  • Although more SR gives better audio quality does not mean we should keep increasing it.
  • After the required line it does not add any information and only increases the computation cost
  • Also, low SR can cause a loss of information

Points to remember —

  • While training all audio samples to have the same sampling rate
  • If you are using a pre-trained model, the audio sample should be resampled to match the SR of the audio data model trained on
  • If Data from different SRs is used, then the model does not generalize well

Amplitude —

  • Sound is made by a change in air pressure at human audible frequencies
  • Amplitude — sound pressure level at that instant measured in dB(decibel)
  • Amplitude is a measure of loudness

Bit Depth —

  • Describes how much precision value can be described
  • The higher the bit depth, the more closely the digital representation resembles the original continuous sound wave
  • Common values of bit depth are 16-bit and 24-bit

Quantizing —

Initially, audio is in continuous form, which is a smooth wave. To store it digitally, we need to store it in small steps; we perform quantizing to do that.

Image by Author

You can say that Bit Depth is the number of steps needed to represent audio

  • 16-bit audio needs — 65536 steps
  • 24-bit audio need — 16777216 steps
  • This quantizing induces noise, hence high bit depth is preferred
  • Although this noise is not a problem
  • 16 and 24-bit audio are stored in int samples whereas 32-bit audio samples are stored in floating points
  • The model required a floating point, so we need to convert this audio into a floating point before we train the model

Implementation —

#load the library
import librosa
#librosa.load function returns the audio array and sampling rate
audio, sampling_rate = librosa.load(librosa.ex('pistachio'))
import matplotlib.pyplot as plt
plt.figure().set_figwidth(12)
librosa.display.waveshow(audio,sr = sampling_rate)
Image by Author
  • amplitude was plotted on the y-axis and time on the x-axis
  • ranges from [-1.0,1.0] — already a floating point number
print(len(audio))
print(sampling_rate/1e3)
>>1560384
>>22.05
## Frequency Spectrum
import numpy as np
# rather than focusing on each discrete value lets just see first 4096 values
input_data = audio[:4096]


# DFT = discrete fourier transform
# this frequency spectrum is plotted using DFT
window = np.hanning(len(input_data))
window

>>array([0.00000000e+00, 5.88561497e-07, 2.35424460e-06, ...,
2.35424460e-06, 5.88561497e-07, 0.00000000e+00])
dft_input = input_data * window
figure = plt.figure(figsize = (15,5))
plt.subplot(131)
plt.plot(input_data)
plt.title('input')
plt.subplot(132)
plt.plot(window)
plt.title('hanning window')
plt.subplot(133)
plt.plot(dft_input)
plt.title('dft_input')
# similar plot is generated for every instance
Image by Author

Discrete Frequency Transform = DFT

  • Would you agree with me if I were to say that up until we have discrete signal data?
  • If you do, then you can understand that up until now, we had the data in the time domain, and now we want to convert it into the frequency domain. That’s why sir DFT is here to help
# calculate the dft - discrete fourier transform
dft = np.fft.rfft(dft_input)
plt.plot(dft)
Image by Author
# amplitude 
amplitude = np.abs(dft)
# convert it into dB
amplitude_dB = librosa.amplitude_to_db(amplitude,ref = np.max)

# sometimes people want to use power spectrum -> A**2

Why take the absolute?

When we took amplitude, we applied the abs function, the reason being the complex number

  • the output returned after the Fourier transform is in complex form, and taking absolute gave us the magnitude, thus absolute.
print(len(amplitude))
print(len(dft_input))
print(len(dft))
>>2049
>>4096
>>2049

Why’s the updated array (half+1) of the original array?

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e., the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore n//2 + 1. [source – documentation]

# frequency
frequency = librosa.fft_frequencies(n_fft=len(input_data),sr = sampling_rate)
plt.figure().set_figwidth(12)
plt.plot(frequency, amplitude_dB)
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude (dB)")
plt.xscale("log")
Image by Author
  • As mentioned earlier, time domain -> frequency domain
  • The frequency domain is usually plotted on a logarithmic scale

Spectrograms —

  • shows how the frequency changes w.r.t. time
  • The algorithm that performs this transformation is soft = short time-frequency transform

How to create a spectrogram —

  • spectrograms are a stack of frequency transforms, how? let us see
  • For given audio, we take small segments and find their frequency spectrum. After that, we just stack them along the time axis. The resultant diagram is a spectrogram
  • librosa.stft by default splits into 2048 segments

Frequency Spectrum —

  • Represents the amplitude of different frequencies at a single moment in time.
  • The frequency spectrum is more suitable for understanding the frequency components present in a signal at a specific instant. Both representations are valuable tools for understanding the characteristics of signals in the frequency domain.
  • AMPLITUDE vs. FREQUENCY

Spectrogram —

  • Represents the changes in frequency content over time by breaking the signal into segments and plotting their frequency spectra over time.
  • The spectrogram is particularly useful for analyzing and visualizing time-varying signals, such as audio signals or time-series data, as it provides insights into how the frequency components evolve over different time intervals.
  • FREQUENCY vs. TIME
spectogram = librosa.stft(audio)
spectogram_to_dB = librosa.amplitude_to_db(np.abs(spectogram),ref = np.max)
plt.figure().set_figwidth(12)
librosa.display.specshow(spectogram_to_dB, x_axis="time", y_axis="hz")
plt.colorbar()
Image by Author

Mel Spectrograms —

  • The spectrogram on different frequency scales.

Before proceeding, one must remember that.

  • At lower frequencies, humans are more sensitive to audio changes than at higher frequencies
  • This sensitivity changes logarithmically with an increase in frequency
  • So in simpler terms, a mel spectrogram is a compressed version of the spectrogram.
MelSpectogram = librosa.feature.melspectrogram(y=audio, sr=sampling_rate, n_mels=128, fmax=8000)
MelSpectogram_dB = librosa.power_to_db(MelSpectogram, ref=np.max)

plt.figure().set_figwidth(12)
librosa.display.specshow(MelSpectogram_dB, x_axis="time", y_axis="mel", sr=sampling_rate, fmax=8000)
plt.colorbar()
Image by Author
  • The above example is used librosa.power_to_db() as librosa.feature.melspectrogram() is used to create a power spectrogram.

Conclusion —

Mel Spectogram helps capture more meaningful features than normal spectrogram and hence is popular.

Reference

Huggingface

Personal Kaggle Kernel (for your practice)

Socials —

LinkedIn

Kaggle

If you liked the article, don’t forget to show appreciation by clapping. See You in the next notebook, where we’ll see ‘How to load and stream the audio data.’

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

JOIN NOW!

Gain exclusive access to top AI tutorials, courses, and books to elevate your skills.

    We won't send you spam. Unsubscribe at any time.

    Feedback ↓

    Sign Up for the Course
    `; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

    Subscribe to our AI newsletter!

    ' + */ '

    Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

    '+ '

    Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

    ' + '
    ' + '' + '' + '

    Note: Content contains the views of the contributing authors and not Towards AI.
    Disclosure: This website may contain sponsored content and affiliate links.

    ' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

    Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

    ' + '
    ' + '

    🔥 Recommended Articles 🔥

    ' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
    ' + 'Top 11 AI Call Center Software for 2024
    ' + 'Learn Prompting 101—Prompt Engineering Course
    ' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
    ' + 'Best AI Communities for Artificial Intelligence Enthusiasts
    ' + 'Best Workstations for Deep Learning
    ' + 'Best Laptops for Deep Learning
    ' + 'Best Machine Learning Books
    ' + 'Machine Learning Algorithms
    ' + 'Neural Networks Tutorial
    ' + 'Best Public Datasets for Machine Learning
    ' + 'Neural Network Types
    ' + 'NLP Tutorial
    ' + 'Best Data Science Books
    ' + 'Monte Carlo Simulation Tutorial
    ' + 'Recommender System Tutorial
    ' + 'Linear Algebra for Deep Learning Tutorial
    ' + 'Google Colab Introduction
    ' + 'Decision Trees in Machine Learning
    ' + 'Principal Component Analysis (PCA) Tutorial
    ' + 'Linear Regression from Zero to Hero
    '+ '

    ', /* + '

    Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

    ',*/ ]; var replaceText = { '': '', '': '', '
    ': '
    ' + ctaLinks + '
    ', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->