Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab VeloxTrend Ultrarix Capital Partners Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Our 15 AI experts built the most comprehensive, practical, 90+ lesson courses to master AI Engineering - we have pathways for any experience at Towards AI Academy. Cohorts still open - use COHORT10 for 10% off.

Publication

Explaining Transformers as Simple as Possible through a Small Language Model
Latest   Machine Learning

Explaining Transformers as Simple as Possible through a Small Language Model

Author(s): Alex Punnen

Originally published on Towards AI.

And understanding Vector Transformations and VectorizationsExplaining Transformers as Simple as Possible through a Small Language Model

This member-only story is on us. Upgrade to access all of Medium.

I have read countless articles and watched many videos about Transformer networks over these past few years. Most of these were very good, yet I struggled to understand the Transformer Architecture while the main intuition behind it (context-sensitive embedding) was easier to grasp. While giving a presentation I tried a different and more effective way. Hence this article is based on that talk and hoping this will be effective.

“What I cannot build. I do not understand.” ― Richard Feynman

I also remembered that when I was learning about Convolutional Neural Nets, I did not understand it fully till I built one from scratch. Hence I have built a few notebooks, which you can run in Colab and highlights of those are also presented here without cluttering as I feel without this complexity it won't be possible to understand in depth.

Please read this brief article if you are unclear about Vectors in the ML context before you go in.

Everything should be made as simple as possible, but not simpler. Albert Einstein

Before we talk about Transformers and jump into the complexity of Keys, Queries, Values, Self-attention and complexity of Multi-head Attention, which… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI


Take our 90+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!


Discover Your Dream AI Career at Towards AI Jobs

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 40,000 live jobs today with Towards AI Jobs!

Note: Content contains the views of the contributing authors and not Towards AI.