Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Deploy HuggingFace NLP Models in Java With Deep Java Library
Latest   Machine Learning

Deploy HuggingFace NLP Models in Java With Deep Java Library

Last Updated on July 26, 2023 by Editorial Team

Author(s): Kexin Feng

Originally published on Towards AI.

A step-by-step demonstration with HuggingFace question answering model.

Authors: Kexin Feng, Cheng-Che Lee

HuggingFace is one of the most popular natural language processing (NLP) toolkits built on top of PyTorch and TensorFlow. It has a variety of pre-trained Python models for NLP tasks, such as question answering and token classification. It also provides powerful tokenizer tools to process input out of the box.

HuggingFace’s APIs enable beginners to implement machine learning models with just a few lines of code. In addition, it offers advanced users the flexibility to customize and fine-tune Transformer-based models. However, since this toolkit is implemented in Python, machine learning (ML) engineers have few options to integrate these models into a production Java environment. Today, if ML engineers were to refactor the code in Java from scratch, they would need to implement data processing like the image to array transformation for more than 10 lines of code and N-dimensional array operation which performs poorly. Now with Deep Java Library (DJL), they just need one line function Image.toNDArray to transform images and take advantage of high-performant NDArray operations which leverage multiple CPU cores and GPU.

DJL provides an easy-to-use model-loading API designed for Java developers. It provides users the flexibility to access model artifacts from a variety of sources including our pre-loaded model zoo, HDFS, S3 buckets, and your local file system. DJL also simplifies data processing to implement HuggingFace models by bundling tokenizer and vocabulary tools required for implementation. Equipped with these features, HuggingFace users can bring their own question answering model using the HuggingFace toolkit in 10 minutes. In this blog post, we walk through deploying your own HuggingFace question answering model step-by-step.

The full source code is available here.

Setup

To get started with DJL, add the following code snippet defining the necessary dependencies to your build.gradle file.

plugins {
id 'java'
}
repositories {
mavenCentral()
}
dependencies {
implementation "org.apache.logging.log4j:log4j-slf4j-impl:2.17.1"
implementation platform("ai.djl:bom:0.21.0")
implementation "ai.djl:api"
runtimeOnly "ai.djl.pytorch:pytorch-engine"
runtimeOnly "ai.djl.pytorch:pytorch-model-zoo"
}

Also note that, when running this code, the default engine may also need to be specified with the VM option: -Dai.djl.default_engine=PyTorchwhich is compatible with the model and the tokenizer.

Bring your own question answering model to DJL

The inference workflow is combined with input preprocessing, model forward, and output post-processing. DJL encapsulates input and output processing into the translator and uses Predictor to do the model forward. To run a question answering task with the HuggingFace API, taking BERT as an example, you create a BertTokenizer to transform your text inputs into machine-understandable tensors, which is part of data preprocessing. Post-processing mainly includes the conversion of the result index. DJL introduces the Translator structure to encapsulate this workflow of preprocessing and post-processing the data. This example Translator is implemented by BertTranslator.

Then you can load a specific model, e.g. BertForQuestionAnswering , to run the inference. Then applying the argmax() on top of the logits to get the result index.

Overview of Translator

Translator is designed to organize preprocessing and post-processing. You define the input and output objects. It contains the following two override classes:

  • public NDList processInput(TranslatorContext ctx, I)
  • public String processOutput(TranslatorContext ctx, O)

Every translator takes in input and returns output in the form of generic objects. In this case, the translator takes the input in the form of QAInput (I) and returns the output as a String (O). QAInput is just an object that holds questions and answers. We have prepared the Input class for you. The output String is the answer that you would expect from the model. Before implementing our first translator, you need sample input.

Create a sample input

The following code sample creates a sample input for the question-answer task using QAInput:

String question = "When did BBC Japan start broadcasting?";
String resourceDocument =
"BBC Japan was a general entertainment Channel.\n" +
"Which operated between December 2004 and April 2006.\n" +
"It ceased operations after its Japanese distributor folded.";
QAInput input = new QAInput(question, resourceDocument);

Tokenize your inputs

DJL provides a built-in BertTokenizer to split your string into tokens. This tokenizer is implemented as follows:

BertTokenizer tokenizer = new BertTokenizer();
List<String> tokenQ = tokenizer.tokenize(question.toLowerCase());
List<String> tokenA = tokenizer.tokenize(resourceDocument.toLowerCase());

Then the output will be:

// tokenQ: [when, did, bbc, japan, start, broadcasting, ?]

// tokenA: [bbc, japan, was, a, general, entertainment, channel, ., which, operated, between, december, 2004, and, april, 2006, ., it, ceased, operations, after, its, japanese, distributor, folded, .]

The tokenizer can also be used to encode the question and the resource document together, which adds the special token used to train the BERT model under the hood. You get all the metadata required for BERT model input. The following code sample demonstrates the three types of inputs that are used for the BERT model: encoded tokens, tokenTypes, and attentionMask.

BertToken token = tokenizer.encode(question.toLowerCase(), resourceDocument.toLowerCase());
List<String> tokens = token.getTokens();
List<Long> tokenTypes = token.getTokenTypes();
List<Long> attentionMask = token.getAttentionMask();

Then the output will be:

tokens: [[CLS], when, did, bbc, japan, start, broadcasting, ?, [SEP], bbc, japan, was, a, general, entertainment, channel, ., which, operated, between, december, 2004, and, april, 2006, ., it, ceased, operations, after, its, japanese, distributor, folded, ., [SEP]]
toeknTypes: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
attentionMask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

When you use the HuggingFace BertTokenizer, it downloads the vocabulary. You can easily find the file by specifying cache_dir in the from_pretrained method. Call PtBertVocabulary.parse(InputStream) to get BertVocabulary. Then, convert the token to the index with getIndex(token) and the other way around with getToken(index) as shown in the following. In this example, the file vocab.txt can be downloaded from our public image here or HuggingFace repo here.

Path file = Paths.get("/YOUR PATH/vocab.txt");
Vocabulary vocabulary = DefaultVocabulary.builder()
.optMinFrequency(1)
.addFromTextFile(file)
.optUnknownToken("[UNK]")
.build();

// index: 2482
long index = vocabulary.getIndex("car");

// token: car
String token = vocabulary.getToken(2482);

Post-process the output

After the model forward call, you get a series of NDArrays as output. We pack those into one object: NDList. You can extract the NDArray from NDList using get(index). To get the index with the highest probability, you apply argMax followed by getLong, which turns the scalar NDArray into a Java primitive type as follows:

// list is NDList which is the output from the model
NDArray startLogits = list.get(0);
NDArray endLogits = list.get(1);
int startIdx = (int) startLogits.argMax().getLong();
int endIdx = (int) endLogits.argMax().getLong();

// token(BertToken) is generated by the encode method.
List<String> tokens = token.getTokens();

// get the answer
tokens.subList(startIdx, endIdx + 1).toString();

Implement the BertTranslator

Now, you can combine the above preprocess and post-process together to create your own translator BertTranslator. Next, it will be used in constructing the Criteria and the predictor.

public class BertTranslator implements Translator<QAInput, String> {
private List<String> tokens;
private Vocabulary vocabulary;
private BertTokenizer tokenizer;

@Override
public void prepare(TranslatorContext ctx) {
Path path = Paths.get("/YOUR PATH/vocab.txt");
vocabulary = DefaultVocabulary.builder()
.optMinFrequency(1)
.addFromTextFile(path)
.optUnknownToken("[UNK]")
.build();
tokenizer = new BertTokenizer();
}

@Override
public NDList processInput(TranslatorContext ctx, QAInput input){
BertToken token =
tokenizer.encode(
input.getQuestion().toLowerCase(),
input.getParagraph().toLowerCase()
);
// get the encoded tokens used in precessOutput
tokens = token.getTokens();
NDManager manager = ctx.getNDManager();
// map the tokens(String) to indices(long)
long[] indices =
tokens.stream().mapToLong(vocabulary::getIndex).toArray();
long[] attentionMask =
token.getAttentionMask().stream().mapToLong(i -> i).toArray();
long[] tokenType = token.getTokenTypes().stream()
.mapToLong(i -> i).toArray();
NDArray indicesArray = manager.create(indices);
NDArray attentionMaskArray =
manager.create(attentionMask);
NDArray tokenTypeArray = manager.create(tokenType);
// The order matters
return new NDList(indicesArray, attentionMaskArray,
tokenTypeArray);
}

@Override
public String processOutput(TranslatorContext ctx, NDList list) {
NDArray startLogits = list.get(0);
NDArray endLogits = list.get(1);
int startIdx = (int) startLogits.argMax().getLong();
int endIdx = (int) endLogits.argMax().getLong();
return tokenizer.tokenToString(tokens.subList(startIdx, endIdx + 1));
}

@Override
public Batchifier getBatchifier() {
return Batchifier.STACK;
}
}

Load your own model from the local file system

At this step, we will construct the Criteria API, which is used as search criteria to look for a ZooModel. In this application, the directory of the local TorchScript model will be specified, so that the ZooModel will be loaded accordingly, with .optModelPath(). The following code snippet loads the model with the file path: /YOUR PATH/trace_cased_bertqa.pt . This TorchScript model file is available in our public image here. You can also download it from HuggingFace and then follow the djl tutorial or official tutorial to save the model with TorchScript format.

BertTranslator translator = new BertTranslator();
Criteria<QAInput, String> criteria = Criteria.builder()
.setTypes(QAInput.class, String.class)
.optModelPath(Paths.get("/YOUR PATH/trace_cased_bertqa.pt"))
.optTranslator(translator)
.optProgress(new ProgressBar()).build();
ZooModel<QAInput, String> model = criteria.loadModel();
Predictor<QAInput, String> predictor = model.newPredictor(tranlator));
return predictor.predict(input);

Criteria API was introduced before in the Implement Object Detection with PyTorch in Java in 5 minutes blog post , where it was used to load the model from a pre-uploaded model zoo. For question-answer model, we uploaded the BERT model to our model zoo, which is fine-tuned with SQuAD from HuggingFace. For more information on the model, see the BERT QA Example.

Put everything together

Now, putting everything together, you are ready to use the model bundled with the translator created above to run inference.

public static void main(String[] args) {
String question = "When did BBC Japan start broadcasting?";
String paragraph =
"BBC Japan was a general entertainment Channel. "
+ "Which operated between December 2004 and April 2006. "
+ "It ceased operations after its Japanese distributor folded.";
QAInput input = new QAInput(question, paragraph);

String answer = HuggingFaceQaInference.qa_predict(input);
System.out.println("The answer is: \n" + answer);
}

Here is the demo input and output:

String paragraph =
"BBC Japan was a general entertainment Channel. "
+ "Which operated between December 2004 and April 2006. "
+ "It ceased operations after its Japanese distributor folded.";

String question = "When did BBC Japan start broadcasting?";
// The answer is:
// december 2004
String question = "What is BBC Japan?"
// The answer is:
// a general entertainment channel
String question = "When did it cease operations?"
// The answer is:
// april 2006

If you are a Java programmer, congratulations! Now you have easy access to HuggingFace QA models. Click here to see the full source code.

You can also easily integrate inference code snippets with Apache Spark, Apache Flink, and Quarkus.

Conclusion

In this blog post, we have demonstrated how to implement your own Hugging Face translator using the Deep Java Library, along with examples of how to run inferences against more complex models. Equipped with this knowledge, you should be able to deploy your own transformer-based model from HuggingFace on Java applications, including SpringBoot and Apache Spark.

If you are a Python user, AWS SageMaker recently announced a collaboration with HuggingFace introducing a new Hugging Face Deep Learning Containers (DLCs). It offers a powerful Python SDK to reduce the gap from science to production for state-of-the-art HuggingFace models with in terms of API usability and performance. You can find more details on The Partnership: Amazon SageMaker and Hugging Face and Use Hugging Face with Amazon SageMaker — Amazon SageMaker.

Disclaimer — This article only represents the authors’ personal opinions. It s not the organization’s official document.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->