Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take the GenAI Test: 25 Questions, 6 Topics. Free from Activeloop & Towards AI

Publication

Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
Data Science   Latest   Machine Learning

Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model

Last Updated on June 4, 2024 by Editorial Team

Author(s): Youssef Hosni

Originally published on Towards AI.

Zero-shot audio classification tasks present a significant challenge in machine learning, particularly when labeled data is scarce. This article explores the application of Hugging Face’s open-source models, specifically the Contrastive Language-Audio Pretraining (CLAP) models, in addressing this task.

The CLAP models leverage contrastive learning techniques to learn representations of audio data without relying on labeled examples during training. The article covers the setup of working environments, building an audio classification pipeline, and considerations such as sampling rates for transformer models. It delves into the architecture and training process of the CLAP models, highlighting their effectiveness in zero-shot audio classification tasks.

Readers interested in zero-shot learning, audio classification, and leveraging pre-trained models for natural language and audio processing tasks will find this article informative and valuable for their research and practical applications.

Setting Up Working EnvironmentsBuild Audio Classification PipelineSampling Rate for Transformer ModelsZero-Shot Audio Classification

Most insights I share in Medium have previously been shared in my weekly newsletter, To Data & Beyond.

If you want to be up-to-date with the frenetic world of AI while also feeling inspired to take action or, at the very least, to be well-prepared for the future ahead of us, this is for you.

🏝Subscribe below🏝 to become an AI leader… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓