Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Build Natural Flower Classifier using Amazon Rekognition Custom Labels
Computer Vision

Build Natural Flower Classifier using Amazon Rekognition Custom Labels

Last Updated on January 6, 2023 by Editorial Team

Author(s): Juv Chan

Computer Vision

Building Natural Flower Classifier using Amazon Rekognition Custom Labels

The Complete Guide with AWS Best Practices

Image by Gerhard G. from Pixabay
Image by Gerhard G. from Pixabay

Introduction

Building your own computer vision model from scratch can be fun and fulfilling. You get to decide your preferred choice of machine learning framework and platform for training and deployment, design your data pipeline and neural network architecture, write custom training and inference scripts, and fine-tune your model algorithm’s hyperparameters to get the optimal model performance.

On the other hand, this can also be a daunting task for someone who has no or little computer vision and machine learning expertise. This post shows a step-by-step guide on how to build a natural flower classifier using Amazon Rekognition Custom Labels with AWS best practices.

Amazon Rekognition Custom Labels Overview

Amazon Rekognition Custom Labels is a feature of Amazon Rekognition, one of the AWS AI services for automated image and video analysis with machine learning. It provides Automated Machine Learning (AutoML) capability for custom computer vision end-to-end machine learning workflows.

It is suitable for anyone who wants to quickly build a custom computer vision model to classify images, detect objects and scenes unique to their use cases. No machine learning expertise is required.

Prerequisites

For this walkthrough, you should have the following prerequisites:

Creating Least Privilege Access IAM User & Policies

As a security best practice, it is strongly recommended not to use the AWS account root user for any task where it is not required. Instead, create a new IAM (Identity and Access Management) user and grant the required permissions for the IAM user based on the principle of least privilege using identity-based policy. This adheres to the IAM best practices under the Security Pillar in the Machine Learning Lens for the AWS Well-Architected Framework.

In this walkthrough, the new IAM user requires both Programmatic access and AWS Management Console access.

AWS Rekognition Custom Labels IAM User’s Access Types

A new customer-managed policy is created to define the set of permissions required for the IAM user. Besides, a bucket policy is also needed for an existing S3 bucket (in this case, my-rekognition-custom-labels-bucket), which is storing the natural flower dataset for access control. This existing bucket can be created by any user other than the new IAM user.

The policy’s definition in JSON format is as shown.

Customer Managed Policy for Custom Labels IAM User

Datasets bucket policy

Flower Dataset

We use the Oxford Flower 102 dataset from the Oxford 102 Flower PyTorch Kaggle competition for building the natural flower classifier using Amazon Rekognition Custom Labels. We use this instead of the original dataset from the Visual Geometry Group, University of Oxford, because it has already been split into train, valid, test datasets, and more importantly, the data has been labelled with respective flower category numbers accordingly for train and valid.

This dataset has a total of 8,189 flower images, where the train split has 6,552 images (80%), the valid split has 818 images (10%), and the test split has 819 images (10%). The code snippet below helps to convert each of the 102 flower category numbers to their respective flower category name.

import os
import json
with open('cat_to_name.json', 'r') as flower_cat:
data = flower_cat.read()
flower_types = json.loads(data)
for cur_dir_name, new_dir_name in flower_types.items():
os.rename(cur_dir_name, new_dir_name)

The dataset bucket should have the same folder structure, as shown below, with both train and valid folders. Each should have 102 folders beneath where each folder name corresponds to a specific flower category name.

Flower Dataset Bucket Folder Structure

Creating a New Flower Classifier Project

After the necessary setup has been completed, you can sign in to the AWS management console as the IAM user. Follow the steps in this guide to create your new project for Amazon Rekognition Custom Labels.

Creating New Training and Test Datasets

We create new training and test datasets for the flower classifier project in Amazon Rekognition Custom Labels by importing images from the S3 bucket. It is important to give the dataset a clear and distinctive name to distinguish between different datasets as well as training or test.

For the training dataset, the S3 folder location is set to the S3 train folder path as below. Similarly, for the test dataset, the S3 folder location is set to the S3 valid folder path.

s3://my-rekognition-custom-labels-bucket/datasets/oxford_flowers_102/train/

s3://my-rekognition-custom-labels-bucket/datasets/oxford_flowers_102/valid/

train
|- alpine sea holly
| |- image_06969.jpg
| |- image_06970.jpg
| |- ...
|- anthurium
| |- image_01964.jpg
| |- image_01965.jpg
| |- ...
|...
valid
|- alpine sea holly
| |- image_06977.jpg
| |- image_06978.jpg
| |- ...
|- anthurium
| |- image_01972.jpg
| |- image_01975.jpg
| |- ...
|...
Create Training/Test Dataset from Importing Images from S3 Bucket

All the images in both training and test datasets are organized into folder names that represent their respective flower category labels. Please make sure to enable Automatic Labeling by checking the box as shown above as Amazon Rekognition Custom Labels supports automatic labeling of these images in such structures. This can save a lot of time and effort from manually labeling large image datasets.

You can safely disregard the “Make sure that your S3 bucket is correctly configured” message as you should have applied the bucket policy earlier. Please make sure that your bucket name is correct if you use a different name than the one in this example.

Make sure the S3 Bucket Policy is Configured Correctly.

After you create the training and test datasets, you should use the datasets as listed.

Training and Test Datasets

When you click into either of the datasets, you should find that all the images are labeled accordingly. You can click on any of the labels to inspect the images of that label. You can also search for a label in the search text box on the left.

Labeled Images for Moon Orchid

Training New Flower Classifier Model

You can train a new model in the Amazon Rekognition Custom Labels console by following this guide. To create a test dataset, you should use the “Choose an existing test dataset” option, as shown below, since it should have been created in the previous section.

The training based on this flower dataset could take more than an hour (approximately 1 hour and 20 minutes in this case) to complete.

Train Model

Evaluating the Trained Model Performance

After the flower classifier model is trained, you can review the model performance by accessing the Evaluation Results in the console, as shown. You can better understand the metrics for evaluating the model performance from this guide. You should be able to achieve similar model performance evaluation results with the same datasets in Amazon Rekognition Custom Labels.

The Per Label Performance is a great feature that allows you to analyze the performance metrics at per label level so that it’s faster and easier for you to find out which labels are performing better or poorer than the average.

Flower Classifier Model Evaluation Results Summary and Per Label Performance

Besides, you can also review and filter the results (True Positive, False Positive, False Negative) of the test images to understand where the model is making incorrect predictions. This information helps you to improve your model’s performance by indicating how to change or add images to your training or test dataset.

Test Results Evaluation Gallery
Test Results filtered by False Positive

Starting the Flower Classifier Model

When you are happy with the performance of your trained flower classifier model, you can use it to predict flowers of your choice. Before you can use it, you need to start the model. At the bottom section of the model evaluation results page, there are sample AWS CLI commands on how to start, stop, and analyze flower images with your model. You can refer to this guide for the detailed step to start the model and set up the AWS CLI for the IAM user.

Use Model with AWS CLI Commands

To start the model, use the AWS CLI command, as shown below. Note that you should change the command line arguments based on your setup or preference. The named profile is specific to the IAM user created for Amazon Rekognition Custom Labels.

aws rekognition start-project-version 
--project-version-arn "MODEL_ARN"
--min-inference-units 1
--region us-east-1
--profile customlabels-iam

Starting the model takes a while (approximately 15 minutes in this case) to complete. You should see the model status shows as RUNNING in the console, as shown.

Model Started

Classifying with Unseen Flower Images

After the model is running, you can use it to predict the flower types of images that do not exist in both the training and test datasets to determine how well your model can perform on supported flower types, which it has not seen before. You can use the AWS CLI command below to determine the predicted label of your image.

aws rekognition detect-custom-labels 
--project-version-arn "MODEL_ARN"
--image '{"S3Object": {"Bucket": "BUCKET_NAME", "Name": "IMAGE_PATH"}}'
--region us-east-1
--profile customlabels-iam

Here are some of the prediction results with datasets that are self-taken or independent from both the training and test datasets.

Roses
{
"CustomLabels": [
{
"Name": "rose",
"Confidence": 99.93900299072266
}
]
}
Lotus
{
"CustomLabels": [
{
"Name": "lotus",
"Confidence": 99.7560043334961
}
]
}
Moon Orchid
{
"CustomLabels": [
{
"Name": "moon orchid",
"Confidence": 98.02899932861328
}
]
}
Hibiscus
{
"CustomLabels": [
{
"Name": "hibiscus",
"Confidence": 98.11100006103516
}
]
}
Sunflower
{
"CustomLabels": [
{
"Name": "sunflower",
"Confidence": 99.86699676513672
}
]
}
Artificial Flower 1
{
"CustomLabels": []
}
Artificial Flower 2
{
"CustomLabels": []
}

Cleaning Up Resources

You are charged for the amount of time your model is running. If you have finished using the model, you should stop it. You can use the AWS CLI command below to stop the model to avoid unnecessary costs incurred.

You should also delete the Custom Labels project and datasets in the S3 bucket if they are no longer needed to save costs as well.

aws rekognition stop-project-version 
--project-version-arn "MODEL_ARN"
--region us-east-1
--profile customlabels-iam

Stopping the model is faster than starting the model. It takes approximately 5 minutes in this case. You should see the model status shows STOPPED in the console.

Model Stopped

Conclusions and Next Steps

This post shows the complete step-by-step walkthrough to create a natural flower classifier using Amazon Rekognition Custom Labels with AWS best practices based on the AWS Well-Architected Framework. It also shows that you can build a high-performance custom computer vision model with Amazon Rekognition Custom Labels without machine learning expertise.

The model built in this walkthrough has an F1 score of 0.997, which is not easy to achieve for the same dataset if build from scratch even with extensive machine learning expertise. It is also able to perform well on the samples of the unseen natural flowers and is expected not able to predict on the samples of artificial flowers.

If you are interested in building a natural flower classifier from scratch, you might be interested in my post: Build, Train and Deploy A Real-World Flower Classifier of 102 Flower Types With TensorFlow 2.3, Amazon SageMaker Python SDK 2.x, and Custom SageMaker Training & Serving Docker Containers.


Build Natural Flower Classifier using Amazon Rekognition Custom Labels was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Published via Towards AI

Comments (2)

  1. ViritaRomero
    November 22, 2020

    Good job on this!! Is there a way to do this on jupyter notebook and not console? I’ve looking for a demo to run the code on jupyter, but haven´t found it yet.

  2. ViritaRomero
    November 25, 2020

    How long did it take you to train the model?

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->