Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Beginners Guide to Convolutional Neural Network from Scratch — Kuzushiji-MNIST
Latest   Machine Learning

Beginners Guide to Convolutional Neural Network from Scratch — Kuzushiji-MNIST

Last Updated on July 25, 2023 by Editorial Team

Author(s): Satsawat Natakarnkitkul

Originally published on Towards AI.

Machine Learning

Figure 1: Convolutional Neural Network (Source: https://en.wikipedia.org/wiki/Convolutional_neural_network)

In the previous post, which you can check it out here, I have demonstrated various dimensional reduction techniques on Kuzushiji-MNIST (KMNIST) data set. In this post, I will build the convolutional neural network from scratch using keras to predict the class of KMNIST.

What is CNN?

Artificial Intelligence is growing a lot faster in the past few years, it is sub-field within computer science that aims to create intelligent machines.

There is a lot of research domains within AI, for example, speech recognition, natural language processing (NLP), and computer vision. I will focus on computer vision in this post.

Figure 2: Example of computer vision tasks (Source: Fei-Fei Li, Andrej Karpathy & Justin Johnson (2016))

The aim of computer vision is to enable machines, computers, or programs to view the world as humans do, and apply the knowledge to specific tasks such as image and video recognition, image classification. This has been enabled with the advancement of deep learning algorithms, to be more specific, a Convolutional Neural Network (CNN / ConvNet).

The architecture of the Convolutional networks are the connectivity pattern of neurons in the animal brain, and are inspired by biological processes, the connectivity pattern between neurons resembles the organization of the animal visual cortex.

Convolutional neural networks have the ability to capture the spatial and temporal dependencies in the input image through the application of relevant filters. It performs better for the image data set due to the reduction in the number of parameters involved and the reusability of weights.

How does it work?

Convolutional neural networks (or ConvNets) do not view the images like we, humans, do. We view the image as flat canvases with color, we may not care much about the width and height of the images but we can perceive those parameters.

Figure 3: RGB color composition

However, ConvNets views images into different dimensional objects such as three-dimensional objects with the third-dimension as a color encoding (or color channel), mainly red-green-blue (RGB) which combines and produces the color we see (of course, there are more than RGB, examples are grayscale, HSV, and CMYK).

Figure 4: 3x3x3 RGB images

The first key point in implementing ConvNets is the precise measurement of each dimension of the image as it will become the foundation of the linear algebra operation used to process the images.

Figure 4 demonstrates how ConvNets works on the RGB image, each layer represents the color (R-G-B) with the number represented the intensity (range between 0 and 255).

Figure 5: RGB(5, 1, 4)

Continue from figure 4, if we take the upper-left pixel, RGB (5, 1, 4). Our eyes will see a purple-ish color.

Imagine now the digital pictures, a seven-megapixel camera may produce 3072 x 2304 pixels (I’m no expert in camera though!!), so how much computationally intensive this will be?

Convolutional neural networks (ConvNets) is to find which of those numbers are significant signals (by reducing the images into a form which is easier to process, and without losing features) that actually help it classify images more accurately. This is another important concept to keep in mind when designing the ConvNet architecture which is not only good at learning features but it is more scalable to massive images data set.

Convolutional Neural Network Layers

Figure 6: Example of ConvNet architecture

There are several main layers implemented in ConvNets.

Conv2D layer

It is a 2-Dimension convolutional layer, mainly it is used as the layer to extract features from the raw input image. The first layer is responsible for capturing low-level features such as edges, color, gradient orientation. With added layers, the architecture will attempt to capture high-level features.

Figure 7: 1-d convolution

Conv2D filters extend through the three channels in the image (red-green-blue). The filters may be different for each channel too.

The red area displays the region of the current filter is computed and is called the receptive field. The number in the filter is called weights or parameters. The filter is sliding (or convolving) around the image, it will compute the element-wise multiplications and fill the output to the output, which is called activation map (or feature map).

We can have multiple convolution layers to identify and capture high-level features, but this comes with more computational power.

Pooling layer

The next layer following the convolution layer is the pooling layer (or down-sampling or sub-sampling). The activation maps are fed into a downsampling layer, this layer will apply one patch at a time (like convolution layer).

The pooling layer progressively reduces the spatial size of the representation. Thus, it reduces the number of parameters and the amount of computational in the network. The pooling layer is also aimed at controlling over-fitting.

Figure 8: Type of pooling layer

There are two main types of pooling layers: max pooling returns the maximum value from the specific pool size (2×2) and average pooling returns the average of all values from the specific pool size, which can be seen from figure 8.

Max pooling performs as a Noise Suppressant, whereas average pooling performs dimensional reduction as noise suppressing mechanism. Hence, max-pooling performs a lot better than the average pooling and is the most common pooling layer to implement.

After going through the above max-pooling layer, we have enabled the ConvNet model to understand the image features. Next part, we will feed it to the fully connected neural network for a classification task.

However, before feeding the output of the pooling layer to the fully connected layer, we need a middle layer to transform the dimension of the data for classification tasks in the FC layer, this middle layer is called the Flatten layer.

Flatten Layer

Figure 9: Flatten layer in action

As mention earlier and the name suggested, this layer will flatten/convert the multi-dimensional arrays into a single long continuous linear vector. In more technical term, it breaks the spatial structure of the data and transforms the multi-dimensional tensor into mono-dimensional tensor, hence a vector.

Dense / Fully connected Layer

Each neuron receives input from all neurons in the previous layer, thus densely connected. The layer has a weight matrix ????, a bias vector ????, and the activation of the previous layer ????. An example can be seen from figure 10a.

Dense implements the operation of:output = activation(dot(input, kernel) + bias) .

Dropout

Figure 10: Dropout method (Source: Giorgio Roffo, Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications)

Actually dropout is a regularization method, during training, some of the numbers of layer outputs are randomly ignored (dropped out, switched out). This implementation will have the effect of making layers be treated-like different layers with a different number of nodes and connectivity to the prior layer.

In a convolutional network, dropout is usually implemented in the fully-connected layers and not the convolution layers.

Python Implementation on Kuzushiji-MNIST

In the previous section, the concepts, definitions of all relevant layers are provided. I will combine those concepts and implement the ConvNet from scratch using keras to classify the Kuzushiji-MNIST¹ in Python language. I will demonstrate how we can write our own callbacks object to use in the model as well.

KMNIST is a drop-in replacement for the MNIST data set, it also represents ten classes of Hiragana characters. The given data set has 60,000 training images and 10,000 testing images. All pixels have 28×28 pixels. Each class is distributed evenly (ten class with 6,000 images each).

Figure 11: Kuzushiji-MNIST

The label is provided as a numeric number from 0 to 9, with each number represents different Hiragana characters (i.e. 0: お, 1: き). The images are also provided in NumPy array format with the shape of (60000, 28, 28) .

We need to do several input transformation of both the images (scaled to 0 and 1) and labels (categorical encoding) data set. The most effective way is to implement a function to handle as we can apply it to both training and testing data. I will also subset the training data further to create a validation data set.

The training, validation, and testing data set consist of 48,000, 12,000, and 10,000 images respectively with the new shape of (28, 28, 1).

As shown in the below code snippet,

  1. we will define the Sequential() model in Keras and add layers to build up the ConvNets. The last layer of the fully-connected is the output layer with 10 output neurons (the same number as the class of images). The softmax activation will give you the probabilities of each class label.
model.add(Dense(NUM_CLASS, activation='softmax'))

2. Choosing loss, optimizer, and metrics to be used in the model

3. Define callbacks function

4. Train and evaluate model performance

What is Callbacks function?

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

Ultimately, it can help you fix bugs, build better models, and keep track on the model’s training. It can use to visualize how the training is going, help prevent over-fitting by using early stopping and save the best model’s weight automatically.

Figure 12: The 7th round epoch during training

In this demonstration, I manually create callbacks class to keep auc the score for each epoch and use ModelCheckPoint and EarlyStopping to save the best weights of the model (based on loss score on validation data set) and stop train the model (if loss score on validation data set stops improving).

Figure 12 shows the callbacks in action, it prints AUC score during each epoch and saves the best weight to file.

We then compute the model performance against the test images. The history (or callback) from previous steps can be feed to visualize how the model learns in each epoch.

Figure 13: CNN from scratch model performance

Thanks for reading up to this point. In this article, I started from walkthrough what is ConvNet, and how it works. The layers for the ConvNet architecture are also explained. I close out this article by implementing the ConvNet from scratch using Keras and write our own callback functions, which further help the model development process.

If you have any questions, please feel free to comment or reach me via LinkedIn here.

GitHub Notebook — Recognizing Kuzushiji Character using KMNIST Data set with Keras

netsatsawat/Kuzushiji-Classification

Repository for demonstrating how deep learning helps to identify and classify the Kuzushiji characters …

github.com

[1]: “KMNIST Dataset” (created by CODH), adapted from “Kuzushiji Dataset” (created by NIJL and others), doi:10.20676/00000341

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->