Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Extracting the potential of PYNLPL: A Step-by-Step Guide
Latest   Machine Learning

Extracting the potential of PYNLPL: A Step-by-Step Guide

Last Updated on June 28, 2023 by Editorial Team

Author(s): Tushar Aggarwal

Originally published on Towards AI.

{This article was written without the assistance or use of AI tools, providing an authentic and insightful exploration of PYNLPL}

Image crafted by Author

Amidst the cacophony of information inundation, rest assured that this compendium is your ultimate compatriot in mastering the enigmatic prowess of PYNLPL. With its all-encompassing content and methodical approach, it bestows upon you invaluable insights and enlightenment. I implore you to safeguard this compendium, be it through preservation or bookmarking, as your ultimate vade mecum in traversing the realm of PYNLPL mastery. Together, let us plunge into the depths and unravel the cryptic tapestry of interpretability!

In the contemporary whirlwind of rapid-paced natural language processing, access to formidable libraries and tools is indispensable for novices and savants alike in this domain. Enter PYNLPL, a multifaceted and user-friendly Python library that streamlines the intricate art of manipulating natural language data. Within the expanse of this extensive expedition, we shall embark upon a voyage that explores the boundless capabilities of PYNLPL, unearths its myriad benefits, and sets you on the path to initiation with this omnipotent library. By the culmination of this discourse, you shall possess a firm grasp of PYNLPL and wield the tools necessary to fabricate and deploy cutting-edge applications in the realm of natural language processing.

Table of Contents

  1. Introduction to PYNLPL
  2. Benefits of PYNLPL
  3. Installation and Setup
  4. Data Preparation
  5. Tokenization
  6. Text Preprocessing
  7. Feature Extraction
  8. Building Models
  9. Model Evaluation and Analysis
  10. Conclusion

1. Introduction to PYNLPL

Prepare to embark on a captivating journey through the realms of PYNLPL, an enchanting open-source assemblage known as the Python Natural Language Processing Library. Crafted with the noble purpose of demystifying the intricacies of working with natural language data, PYNLPL emerges as a beacon of simplicity and efficiency. Leveraging the prowess of esteemed Python libraries such as NLTK, spaCy, and Gensim, PYNLPL presents an integrated interface that harmonizes diverse natural language processing undertakings, encompassing tokenization, text preprocessing, feature extraction, and model construction. Through its modular architecture, PYNLPL bestows upon users the power to seamlessly transition between diverse tasks, rendering it an indispensable tool for both neophytes and savants navigating the vast realm of natural language processing.

2. Benefits of PYNLPL

Immerse yourself in the realm of PYNLPL and discover a multitude of benefits that await you:

  1. Streamlined Natural Language Processing Workflow: PYNLPL acts as a guiding light, untangling the intricacies of natural language processing. With just a few lines of code, you can effortlessly perform tasks such as tokenization, text preprocessing, and feature extraction, liberating you from the shackles of complexity.
  2. Velocity and Efficiency Unleashed: Embrace the swiftness and efficiency bestowed upon you by PYNLPL’s streamlined workflow. Iterate through diverse models and techniques at an accelerated pace, reducing the time devoted to model development and optimization.
  3. Liberation from Tedious Tasks: Bid adieu to the monotonous drudgery of laborious natural language processing tasks. PYNLPL automates the arduous endeavors of text preprocessing and feature extraction, allowing you to divert your attention to the crux of your project: comprehending your data and interpreting your results.
  4. A Harmonious Interface for Multifarious Tasks: PYNLPL presents a unified API, seamlessly integrating multiple natural language processing tasks. This harmonious interface simplifies the learning curve and diminishes the time and effort required to acquaint oneself with new tools.
  5. Extensibility Unleashed: Unlock the door to PYNLPL’s extensibility, courtesy of its modular design. Effortlessly integrate custom modules and third-party libraries, empowering you to expand its functionalities in accordance with your unique needs.

Now let us start with it…

3. Installation and Setup

Installing PYNLPL is simple and can be done using pip:

# Let's start with import the pynlpl library
pip install pynlpl

Ensure that you have Python 3.6 or higher and a stable internet connection for the installation process.

4. Data Preparation

Before you embark on your PYNLPL journey, it is crucial to emphasize the importance of having a well-organized dataset for your natural language processing (NLP) task. It is essential to ensure that your data is meticulously cleaned, efficiently preprocessed and thoughtfully structured in a manner that aligns with the specific problem you aim to solve.

Loading the Data

# Let's start with import the pandas library
import pandas as pd

# Now using pandas pd.read_csv, import the .csv file
data = pd.read_csv('your_data.csv')

5. Tokenizationpp

Tokenization, a fundamental linguistic operation, involves the dissection of a given text into distinct units, be it words or tokens. PYNLPL, a versatile toolset, empowers users with a user-friendly interface for executing tokenization on textual data, employing an array of diverse and effective tokenization methodologies.

Tokenizing Text with PYNLPL

# Let's start with import the Tokenizer from pynlpl
from pynlpl.tokenizers import Tokenizer

# Now, creating Tokenizer with 'default' method, explore others
tokenizer = Tokenizer(method='default')

# Now, creating tokens for further processing
tokens = tokenizer.tokenize('This is a sample text.')

Here, we create an instance of the Tokenizer class and specify the tokenization method. In this example, we use the 'default' method, which is a general-purpose tokenizer suitable for most tasks. The tokenize() method is then called on the input text, returning a list of tokens.

6. Text Preprocessing

Text preprocessing holds paramount significance within the realm of natural language processing, acting as a crucial precursor to enable seamless comprehension by machine learning algorithms. This indispensable step encompasses the purification and conversion of raw textual data into a structured format, facilitating subsequent analysis. PYNLPL, a powerful toolkit, offers an extensive repertoire of text preprocessing techniques, encompassing the likes of lowercase conversion, stopword elimination, and stemming, all of which play pivotal roles in refining and enhancing the quality of the processed text.

Lowercasing Text

# Using str.lower() for Lowercasing text
preprocessed_text = data['text'].str.lower()

Removing Stopwords

# Let's start with import 'remove_stopwords' from the pynlpl library
from pynlpl.preprocessing import remove_stopwords

#
stopwords_removed = data['text'].apply(lambda x: remove_stopwords(x))

Stemming Text

from pynlpl.preprocessing import stem_text

stemmed_text = data['text'].apply(lambda x: stem_text(x))

7. Feature Extraction

Feature extraction serves as a transformative endeavor, wherein textual data undergoes a metamorphosis into numerical features, which can seamlessly serve as inputs for machine learning algorithms. Within the realm of PYNLPL, an impressive toolkit, a diverse array of feature extraction techniques awaits exploration. These encompass the notable methodologies of bag-of-words, term frequency-inverse document frequency (TF-IDF), and word embeddings, each harboring distinct capabilities to distill the essence of text and empower the subsequent machine learning endeavors.

Bag-of-Words

from pynlpl.feature_extraction import BagOfWordsVectorizer

vectorizer = BagOfWordsVectorizer()
X = vectorizer.fit_transform(data['text'])

TF-IDF

from pynlpl.feature_extraction import TfidfVectorizer

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(data['text'])

Word Embeddings

from pynlpl.feature_extraction import WordEmbeddingsVectorizer

vectorizer = WordEmbeddingsVectorizer()
X = vectorizer.fit_transform(data['text'])

8. Building Models

Equipped with the diligently preprocessed and feature-extracted text data, a world of possibilities opens up for constructing an array of natural language processing models utilizing the prowess of PYNLPL. This versatile library presents a straightforward interface, harmoniously blending the power of renowned machine learning libraries like Scikit-learn and Keras. Harnessing the amalgamation of these robust frameworks, users gain the ability to effortlessly engineer and deploy a rich assortment of NLP models, propelling their understanding and utilization of language to unprecedented heights.

Building a Text Classification Model

from pynlpl.models import TextClassifier

classifier = TextClassifier()
classifier.fit(X_train, y_train)
predictions = classifier.predict(X_test)

9. Model Evaluation and Analysis

PYNLPL extends its support beyond model training, ensuring an all-encompassing experience by providing an array of evaluation metrics and plotting functions. The library offers intuitive plotting functions, enabling the visualization and interpretation of results in a manner that elucidates the underlying patterns and insights.

Calculating Evaluation Metrics

from pynlpl.evaluation import accuracy_score, precision_score, recall_score, f1_score

accuracy = accuracy_score(y_test, predictions)
precision = precision_score(y_test, predictions)
recall = recall_score(y_test, predictions)
f1 = f1_score(y_test, predictions)

Plotting Model Performance

PYNLPL provides a simple interface for generating various plots to visualize the performance of your models, such as confusion matrices, precision-recall curves, and ROC curves.

from pynlpl.plotting import plot_confusion_matrix, plot_precision_recall_curve, plot_roc_curve

plot_confusion_matrix(y_test, predictions)
plot_precision_recall_curve(y_test, predictions)
plot_roc_curve(y_test, predictions)

10. Conclusion

In conclusion, PYNLPL emerges as a formidable force in the realm of natural language processing, empowering you to construct, deploy, and oversee applications with remarkable ease. It's user-friendly design and comprehensive capabilities render it the perfect companion for novices and savants alike in this field. By traversing this meticulous guide, supplemented with illustrative Python codes, you have now acquired the ability to harness the boundless potential of PYNLPL. Delve into the realm of data-driven decision-making and conquer your unique natural language processing predicaments with finesse. Let PYNLPL be your guiding light on the path to unparalleled success.

……………………Follow me on Github, Kaggle & LinkedIn……………………..

………………..Check out my work on www.tushar-aggarwal.com………………

………………………Subscribe to my Newsletter on SubStack…………………….

…………………………………Buy me a coffee U+2615…………………………………….

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->